Using single/multi-channel energy transform as preprocessing tool for magnetoencephalographic data-based applications

D. Gutiérrez
{"title":"Using single/multi-channel energy transform as preprocessing tool for magnetoencephalographic data-based applications","authors":"D. Gutiérrez","doi":"10.1109/CONIELECOMP.2010.5440785","DOIUrl":null,"url":null,"abstract":"The purpose of this preliminary work is to evaluate the effectiveness of the single/multi-channel energy transform (ET) as preprocessing tool for magnetoencephalographic (MEG) data-based applications. The ET is a derivative-based transformation that enhances either the variability content of a signal from a single channel, or the compound variability content of signals from multiple channels. In the case of the single-channel ET, a spatial focusing effect in MEG data is achieved, which is a desirable effect given that MEG spatial variability can be correlated to regions of brain activity. On the other hand, when the ET is applied to channels that have been grouped following certain anatomical or physiological criteria, the variability content of the group gets concentrated and a signal compression is achieved. This effect can be useful in MEG-based brain-computer interfaces (BCI) where channel density compression is desired when going from training data to real life applications. Both the spatial focusing and compression properties of the ET are demonstrated with real MEG experiments.","PeriodicalId":236039,"journal":{"name":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2010.5440785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this preliminary work is to evaluate the effectiveness of the single/multi-channel energy transform (ET) as preprocessing tool for magnetoencephalographic (MEG) data-based applications. The ET is a derivative-based transformation that enhances either the variability content of a signal from a single channel, or the compound variability content of signals from multiple channels. In the case of the single-channel ET, a spatial focusing effect in MEG data is achieved, which is a desirable effect given that MEG spatial variability can be correlated to regions of brain activity. On the other hand, when the ET is applied to channels that have been grouped following certain anatomical or physiological criteria, the variability content of the group gets concentrated and a signal compression is achieved. This effect can be useful in MEG-based brain-computer interfaces (BCI) where channel density compression is desired when going from training data to real life applications. Both the spatial focusing and compression properties of the ET are demonstrated with real MEG experiments.
将单/多通道能量变换作为脑磁图数据应用的预处理工具
本初步工作的目的是评估单/多通道能量变换(ET)作为基于脑磁图(MEG)数据的预处理工具的有效性。ET是一种基于导数的变换,可以增强来自单个通道的信号的可变性内容,也可以增强来自多个通道的信号的复合可变性内容。在单通道ET的情况下,MEG数据实现了空间聚焦效应,考虑到MEG空间变异性可以与大脑活动区域相关,这是一种理想的效果。另一方面,当ET应用于按照一定解剖或生理标准分组的通道时,分组的变异性内容得到集中,从而实现信号压缩。这种效果在基于meg的脑机接口(BCI)中很有用,当从训练数据到实际应用程序时,通道密度压缩是需要的。通过实际脑磁图实验验证了该方法的空间聚焦和压缩特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信