Penerapan Metode K-Means Dalam Melakukan Pengelompokan Bencana Alam di Indonesia Dilakukan dengan Memanfaatkan Teknik Text Mining

Iqbal Alfian
{"title":"Penerapan Metode K-Means Dalam Melakukan Pengelompokan Bencana Alam di Indonesia Dilakukan dengan Memanfaatkan Teknik Text Mining","authors":"Iqbal Alfian","doi":"10.33364/algoritma/v.20-1.1275","DOIUrl":null,"url":null,"abstract":"Bencana alam di Indonesia beberapa diantaranya adalah banjir, gempa bumi, erupsi dan lainnya. Dalam menghadapi hal tersebut, pengelompokan jenis bencana menjadi sangat krusial untuk menetapkan langkah dan rencana yang sesuai. Teknologi dapat digunakan untuk memudahkan proses pengelompokan tersebut, salah satunya dengan memanfaatkan teknik text mining. Pengelompokan informasi dilakukan dengan memasukan kebeberapa klaster dengan dasar keterkaitan antar kata menggunakan algoritma K-Means. Dalam penelitian ini, bertujuan untuk menghasilkan sebuah model pengelompokan bencana alam di Indonesia dengan menerapkan algoritma K-Means. Analisa didasari oleh data komentar masyarakat tentang bencana alam di media sosial Twitter. Penggunaan metode text mining dengan aplikasi RStudio berhasil melakukan pengelompokan bencana alam berdasarkan potensi dan jenisnya dari data komentar masyarakat di media sosial twitter. Setelah melakukan text cleaning, text processing, dan metode TF-IDF, diketahui bahwa banjir dan gempa merupakan topik bencana alam tertinggi dari penambangan data tersebut. Metode unsupervised dengan algoritma K-Means digunakan untuk membangun kelompok topik berdasarkan jarak keterkaitan antar kata-kata. Evaluasi dilakukan menggunakan metode Sum of Square Error dan Silhoutte Coefficient, dan diperoleh akurasi sebesar 75.0% dan 96.7%. Simpulan bahwa algoritma K-Means berhasil membangun kelompok topik berdasarkan jarak keterkaitan antar kata-kata pada data komentar masyarakat tentang bencana alam di twitter.","PeriodicalId":371939,"journal":{"name":"Jurnal Algoritma","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Algoritma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33364/algoritma/v.20-1.1275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bencana alam di Indonesia beberapa diantaranya adalah banjir, gempa bumi, erupsi dan lainnya. Dalam menghadapi hal tersebut, pengelompokan jenis bencana menjadi sangat krusial untuk menetapkan langkah dan rencana yang sesuai. Teknologi dapat digunakan untuk memudahkan proses pengelompokan tersebut, salah satunya dengan memanfaatkan teknik text mining. Pengelompokan informasi dilakukan dengan memasukan kebeberapa klaster dengan dasar keterkaitan antar kata menggunakan algoritma K-Means. Dalam penelitian ini, bertujuan untuk menghasilkan sebuah model pengelompokan bencana alam di Indonesia dengan menerapkan algoritma K-Means. Analisa didasari oleh data komentar masyarakat tentang bencana alam di media sosial Twitter. Penggunaan metode text mining dengan aplikasi RStudio berhasil melakukan pengelompokan bencana alam berdasarkan potensi dan jenisnya dari data komentar masyarakat di media sosial twitter. Setelah melakukan text cleaning, text processing, dan metode TF-IDF, diketahui bahwa banjir dan gempa merupakan topik bencana alam tertinggi dari penambangan data tersebut. Metode unsupervised dengan algoritma K-Means digunakan untuk membangun kelompok topik berdasarkan jarak keterkaitan antar kata-kata. Evaluasi dilakukan menggunakan metode Sum of Square Error dan Silhoutte Coefficient, dan diperoleh akurasi sebesar 75.0% dan 96.7%. Simpulan bahwa algoritma K-Means berhasil membangun kelompok topik berdasarkan jarak keterkaitan antar kata-kata pada data komentar masyarakat tentang bencana alam di twitter.
印尼对自然灾害总体规划的执行采用了文本挖掘技术
印度尼西亚的自然灾害包括洪水、地震、火山爆发等等。面对这种情况,建立适当的步骤和计划变得至关重要。技术可以用来简化集群过程,其中之一是利用文本挖掘技术。信息集群是通过使用k -均值算法输入几个簇之间的相互关系来实现的。在这项研究中,旨在产生一个模型分类自然灾害在印度尼西亚运用K-Means算法。分析是基于Twitter社交媒体上对自然灾害的评论数据。使用RStudio应用程序的文本挖掘方法,成功地将自然灾害分类,基于twitter社交媒体上的社会评论数据的潜力和类型。文本做清洁、文本加工和方法后,TF-IDF众所周知,洪水和地震是自然灾害数据开采的最高的话题。unsupervised方法和K-Means算法用来建造小组根据距离的话题单词之间的联系。评估是使用平方误差和Silhoutte coefte方法进行的,准确率为75.0%和96.7%。结论是,基于公众对推特上自然灾害数据的评论之间的差异,k -均值算法成功地构建了一个主题组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信