Mingyuan Ge, Yunhao Lu, Peter Ercius, Jiepeng Rong, Xin Fang, Matthew Mecklenburg, Chongwu Zhou
{"title":"Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon","authors":"Mingyuan Ge, Yunhao Lu, Peter Ercius, Jiepeng Rong, Xin Fang, Matthew Mecklenburg, Chongwu Zhou","doi":"10.1021/nl403923s","DOIUrl":null,"url":null,"abstract":"<p >Recently, silicon-based lithium-ion battery anodes have shown encouraging results, as they can offer high capacities and long cyclic lifetimes. The applications of this technology are largely impeded by the complicated and expensive approaches in producing Si with desired nanostructures. We report a cost-efficient method to produce nanoporous Si particles from metallurgical Si through ball-milling and inexpensive stain-etching. The porosity of porous Si is derived from particle’s three-dimensional reconstructions by scanning transmission electron microscopy (STEM) tomography, which shows the particles’ highly porous structure when etched under proper conditions. Nanoporous Si anodes with a reversible capacity of 2900 mAh/g was attained at a charging rate of 400 mA/g, and a stable capacity above 1100 mAh/g was retained for extended 600 cycles tested at 2000 mA/g. The synthetic route is low-cost and scalable for mass production, promising Si as a potential anode material for the next-generation lithium-ion batteries with enhanced capacity and energy density.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2013-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/nl403923s","citationCount":"195","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/nl403923s","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 195
Abstract
Recently, silicon-based lithium-ion battery anodes have shown encouraging results, as they can offer high capacities and long cyclic lifetimes. The applications of this technology are largely impeded by the complicated and expensive approaches in producing Si with desired nanostructures. We report a cost-efficient method to produce nanoporous Si particles from metallurgical Si through ball-milling and inexpensive stain-etching. The porosity of porous Si is derived from particle’s three-dimensional reconstructions by scanning transmission electron microscopy (STEM) tomography, which shows the particles’ highly porous structure when etched under proper conditions. Nanoporous Si anodes with a reversible capacity of 2900 mAh/g was attained at a charging rate of 400 mA/g, and a stable capacity above 1100 mAh/g was retained for extended 600 cycles tested at 2000 mA/g. The synthetic route is low-cost and scalable for mass production, promising Si as a potential anode material for the next-generation lithium-ion batteries with enhanced capacity and energy density.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.