Neurodynamic systems and Lyapunov exponents

I. Dano
{"title":"Neurodynamic systems and Lyapunov exponents","authors":"I. Dano","doi":"10.1109/CARPATHIANCC.2012.6228624","DOIUrl":null,"url":null,"abstract":"The neurodynamical model of recurrent networks in this paper is approached from an engineering perspective, i.e. to make networks efficient in terms of topology and capture dynamics of time-varying systems. Neural dynamics in that case can be considered from two aspects, convergence of state variables (memory recall) and the number, position, local stability and domains of attraction of equilibrium states (memory capacity). The purpose of this work is to investigate some relationship between Lyapunov exponents and the recurrent neural network model described by the concrete system of delay-differential equations.","PeriodicalId":334936,"journal":{"name":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2012.6228624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The neurodynamical model of recurrent networks in this paper is approached from an engineering perspective, i.e. to make networks efficient in terms of topology and capture dynamics of time-varying systems. Neural dynamics in that case can be considered from two aspects, convergence of state variables (memory recall) and the number, position, local stability and domains of attraction of equilibrium states (memory capacity). The purpose of this work is to investigate some relationship between Lyapunov exponents and the recurrent neural network model described by the concrete system of delay-differential equations.
神经动力学系统和李雅普诺夫指数
本文从工程的角度探讨递归网络的神经动力学模型,即使网络在拓扑方面高效,并捕获时变系统的动态。在这种情况下,神经动力学可以从两个方面考虑,状态变量的收敛性(记忆召回)和平衡状态的数量、位置、局部稳定性和吸引域(记忆容量)。本文的目的是研究Lyapunov指数与递归神经网络模型之间的关系,这种递归神经网络模型由具体的时滞微分方程组描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信