Multiresolution source localization using the wavelet transform

Mingui Sun, Fu-Chrang Tsui, R. Sclabassi
{"title":"Multiresolution source localization using the wavelet transform","authors":"Mingui Sun, Fu-Chrang Tsui, R. Sclabassi","doi":"10.1109/NEBC.1993.404404","DOIUrl":null,"url":null,"abstract":"The use of the wavelet transform to localize the current dipole sources from the multichannel electroencephalogram (EEG) is discussed. The wavelet approach automatically computes the critical time-slices at which the dipole sources are localized. Unlike the traditional approaches, where visually selected time-slices are used which represent only part of the information available in the data, the automatically computed time-slices are information-preserving. As a result, the EEG can be closely reconstructed using the parameters at each computed time-slice. In addition, the multiresolution framework of the wavelet transform provides a mathematical zoom lens which enables one to select major electrical sources at courser scale levels, and to observe the details at finer scale levels.<<ETX>>","PeriodicalId":159783,"journal":{"name":"1993 IEEE Annual Northeast Bioengineering Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1993.404404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The use of the wavelet transform to localize the current dipole sources from the multichannel electroencephalogram (EEG) is discussed. The wavelet approach automatically computes the critical time-slices at which the dipole sources are localized. Unlike the traditional approaches, where visually selected time-slices are used which represent only part of the information available in the data, the automatically computed time-slices are information-preserving. As a result, the EEG can be closely reconstructed using the parameters at each computed time-slice. In addition, the multiresolution framework of the wavelet transform provides a mathematical zoom lens which enables one to select major electrical sources at courser scale levels, and to observe the details at finer scale levels.<>
使用小波变换的多分辨率源定位
讨论了小波变换在多通道脑电图电流偶极子源定位中的应用。小波方法自动计算偶极子源定位的临界时间片。与传统方法不同,使用视觉选择的时间片只代表数据中可用信息的一部分,自动计算的时间片是信息保留的。因此,利用每个计算时间片上的参数可以精确地重建脑电信号。此外,小波变换的多分辨率框架提供了一个数学变焦镜头,使人们能够在更大的尺度上选择主要的电源,并在更细的尺度上观察细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信