Semantic fusion of live Web content: System design and implementation experiences

Vincent Lenders
{"title":"Semantic fusion of live Web content: System design and implementation experiences","authors":"Vincent Lenders","doi":"10.1109/SDF.2013.6698256","DOIUrl":null,"url":null,"abstract":"Conventional Web search models are ineffective at providing quick and comprehensive answers to questions related to live content such as real-time data or temporal relationships between actors. Semantic data fusion techniques have the potential to provide a more suitable abstraction model for efficient search on this type of data. However, myriad architectural and technical implementation challenges arise when trying to implement a working system. This paper summarizes our efforts and experiences at implementing a functional semantic fusion system for live content from the Web. Besides semantic data fusion techniques, we make extensive use of natural language processing, semantic Web technologies and Bayesian statistics to render the system a self-contained framework acting directly between Web resources of interest and end-user search applications. We first present the semantic fusion architecture design that we have developed. We have implemented this architecture and tested its effectiveness using real-world live data from the Web over multiple weeks. We then report about our major experiences and lessons-learned of this experiment.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"30 26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventional Web search models are ineffective at providing quick and comprehensive answers to questions related to live content such as real-time data or temporal relationships between actors. Semantic data fusion techniques have the potential to provide a more suitable abstraction model for efficient search on this type of data. However, myriad architectural and technical implementation challenges arise when trying to implement a working system. This paper summarizes our efforts and experiences at implementing a functional semantic fusion system for live content from the Web. Besides semantic data fusion techniques, we make extensive use of natural language processing, semantic Web technologies and Bayesian statistics to render the system a self-contained framework acting directly between Web resources of interest and end-user search applications. We first present the semantic fusion architecture design that we have developed. We have implemented this architecture and tested its effectiveness using real-world live data from the Web over multiple weeks. We then report about our major experiences and lessons-learned of this experiment.
实时Web内容的语义融合:系统设计和实现经验
传统的Web搜索模型在为与实时数据或参与者之间的时间关系等实时内容相关的问题提供快速和全面的答案方面是无效的。语义数据融合技术有可能为这类数据的有效搜索提供更合适的抽象模型。然而,在尝试实现一个工作系统时,会出现无数的架构和技术实现挑战。本文总结了我们在实现Web实时内容的功能性语义融合系统方面所做的努力和经验。除了语义数据融合技术外,我们还广泛使用自然语言处理、语义Web技术和贝叶斯统计,使系统成为一个独立的框架,直接作用于感兴趣的Web资源和最终用户搜索应用程序之间。我们首先介绍我们开发的语义融合架构设计。我们已经实现了这个体系结构,并在数周内使用来自Web的真实实时数据测试了它的有效性。然后我们报告我们在这个实验中的主要经验和教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信