Sparse Matrix-Vector Multiplication for Finite Element Method Matrices on FPGAs

Y. El-Kurdi, W. Gross, D. Giannacopoulos
{"title":"Sparse Matrix-Vector Multiplication for Finite Element Method Matrices on FPGAs","authors":"Y. El-Kurdi, W. Gross, D. Giannacopoulos","doi":"10.1109/FCCM.2006.65","DOIUrl":null,"url":null,"abstract":"The paper presents an architecture and an implementation of an FPGA-based sparse matrix-vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from finite element method (FEM) applications. The architecture is based on a pipelined linear array of processing elements (PEs). A hardware-oriented matrix \"striping\" scheme is developed which reduces the number of required processing elements. The current 8 PE prototype achieves a peak performance of 1.76 GFLOPS and a sustained performance of 1.5 GFLOPS with 8 GB/s of memory bandwidth. The SMVM-pipeline uses 30% of the logic resources and 40% of the memory resources of a Stratix S80 FPGA. By virtue of the local interconnect between the PEs, the SMVM-pipeline obtain scalability features that is only limited by FPGA resources instead of the communication overhead","PeriodicalId":123057,"journal":{"name":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2006.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The paper presents an architecture and an implementation of an FPGA-based sparse matrix-vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from finite element method (FEM) applications. The architecture is based on a pipelined linear array of processing elements (PEs). A hardware-oriented matrix "striping" scheme is developed which reduces the number of required processing elements. The current 8 PE prototype achieves a peak performance of 1.76 GFLOPS and a sustained performance of 1.5 GFLOPS with 8 GB/s of memory bandwidth. The SMVM-pipeline uses 30% of the logic resources and 40% of the memory resources of a Stratix S80 FPGA. By virtue of the local interconnect between the PEs, the SMVM-pipeline obtain scalability features that is only limited by FPGA resources instead of the communication overhead
fpga上有限元方法矩阵的稀疏矩阵-向量乘法
本文提出了一种基于fpga的稀疏矩阵向量乘法器(SMVM)的结构和实现,用于有限元法(FEM)应用中产生的大型稀疏方程组的迭代求解。该体系结构基于处理元素(pe)的流水线线性阵列。提出了一种面向硬件的矩阵“条带化”方案,减少了所需处理单元的数量。目前的8 PE原型在8gb /s内存带宽下实现了1.76 GFLOPS的峰值性能和1.5 GFLOPS的持续性能。smvm流水线占用Stratix S80 FPGA 30%的逻辑资源和40%的内存资源。通过pe之间的本地互连,SMVM-pipeline获得了仅受FPGA资源限制而不受通信开销限制的可扩展性特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信