Performance analysis of least mean square algorithm for different step size parameters with different filter order and iterations

R. Nagal, Pradeep Kumar, Poonam Bansal
{"title":"Performance analysis of least mean square algorithm for different step size parameters with different filter order and iterations","authors":"R. Nagal, Pradeep Kumar, Poonam Bansal","doi":"10.1109/RDCAPE.2015.7281418","DOIUrl":null,"url":null,"abstract":"This paper presents the performance analysis of Least Mean Square (LMS) algorithm for adaptive noise cancellation by varying its step size parameter μ for different filter order and no of iteration. The presented work has been simulated in MATLAB and verified that the step size parameter plays a vital role for implementation of Least Mean Square (LMS) algorithm. Increasing the step size parameter μ leads to fast convergence rate and instability of the least mean square algorithm. On the other side if the step size parameter μ is small then the error reduced to great amount but algorithm converges slowly and becomes stable. On the basis of obtained results we can conclude that step size parameter μ is directly proportional to convergence rate and error reduction and inversely proportional to stability. The work presented here also shown the comparison of actual weights and the estimated weights.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents the performance analysis of Least Mean Square (LMS) algorithm for adaptive noise cancellation by varying its step size parameter μ for different filter order and no of iteration. The presented work has been simulated in MATLAB and verified that the step size parameter plays a vital role for implementation of Least Mean Square (LMS) algorithm. Increasing the step size parameter μ leads to fast convergence rate and instability of the least mean square algorithm. On the other side if the step size parameter μ is small then the error reduced to great amount but algorithm converges slowly and becomes stable. On the basis of obtained results we can conclude that step size parameter μ is directly proportional to convergence rate and error reduction and inversely proportional to stability. The work presented here also shown the comparison of actual weights and the estimated weights.
最小均方算法在不同步长参数、不同滤波阶数和迭代下的性能分析
针对不同的滤波阶数和迭代次数,通过改变LMS的步长参数μ,分析了LMS自适应消噪算法的性能。本文的工作在MATLAB中进行了仿真,验证了步长参数对最小均方算法的实现起着至关重要的作用。增大步长参数μ可以提高最小均方算法的收敛速度和稳定性。另一方面,当步长参数μ较小时,误差减小到很大,但算法收敛缓慢,趋于稳定。根据得到的结果,我们可以得出步长参数μ与收敛速度和误差减小成正比,与稳定性成反比的结论。这里介绍的工作还显示了实际权重和估计权重的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信