{"title":"Performance analysis of least mean square algorithm for different step size parameters with different filter order and iterations","authors":"R. Nagal, Pradeep Kumar, Poonam Bansal","doi":"10.1109/RDCAPE.2015.7281418","DOIUrl":null,"url":null,"abstract":"This paper presents the performance analysis of Least Mean Square (LMS) algorithm for adaptive noise cancellation by varying its step size parameter μ for different filter order and no of iteration. The presented work has been simulated in MATLAB and verified that the step size parameter plays a vital role for implementation of Least Mean Square (LMS) algorithm. Increasing the step size parameter μ leads to fast convergence rate and instability of the least mean square algorithm. On the other side if the step size parameter μ is small then the error reduced to great amount but algorithm converges slowly and becomes stable. On the basis of obtained results we can conclude that step size parameter μ is directly proportional to convergence rate and error reduction and inversely proportional to stability. The work presented here also shown the comparison of actual weights and the estimated weights.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents the performance analysis of Least Mean Square (LMS) algorithm for adaptive noise cancellation by varying its step size parameter μ for different filter order and no of iteration. The presented work has been simulated in MATLAB and verified that the step size parameter plays a vital role for implementation of Least Mean Square (LMS) algorithm. Increasing the step size parameter μ leads to fast convergence rate and instability of the least mean square algorithm. On the other side if the step size parameter μ is small then the error reduced to great amount but algorithm converges slowly and becomes stable. On the basis of obtained results we can conclude that step size parameter μ is directly proportional to convergence rate and error reduction and inversely proportional to stability. The work presented here also shown the comparison of actual weights and the estimated weights.