Restoration of noisy radiographic images applied in Non Destructive Testing (NDT)

M. Sahnoun, A. Allag, R. Drai, A. Benammar
{"title":"Restoration of noisy radiographic images applied in Non Destructive Testing (NDT)","authors":"M. Sahnoun, A. Allag, R. Drai, A. Benammar","doi":"10.1109/ICAEE47123.2019.9014675","DOIUrl":null,"url":null,"abstract":"Restoring degraded images is a problem that is part of the digital image processing domain. When acquiring images, phenomena such as noise, blur and bad quality are always present. Our goal is to reduce noise in the case of radiographic images applied in Non Destructive Testing (NDT) to get closer to a more authentic image. In our simulation we considered a Gaussian noise and a real noise, we use methods based on minimization algorithms without constraints such as fixed step gradient, optimization algorithms with constraints such as the projected gradient algorithm and an algorithm that applies a regularization (Total Variation) based Rudin-Osher-Fatemi model (ROF) using the Chambolle projection to improve the quality of the results. At the end a comparative study of algorithms used.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9014675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Restoring degraded images is a problem that is part of the digital image processing domain. When acquiring images, phenomena such as noise, blur and bad quality are always present. Our goal is to reduce noise in the case of radiographic images applied in Non Destructive Testing (NDT) to get closer to a more authentic image. In our simulation we considered a Gaussian noise and a real noise, we use methods based on minimization algorithms without constraints such as fixed step gradient, optimization algorithms with constraints such as the projected gradient algorithm and an algorithm that applies a regularization (Total Variation) based Rudin-Osher-Fatemi model (ROF) using the Chambolle projection to improve the quality of the results. At the end a comparative study of algorithms used.
在无损检测(NDT)中的应用
恢复退化图像是数字图像处理领域的一个问题。在获取图像时,噪点、模糊和质量差等现象总是存在。我们的目标是在无损检测(NDT)中减少射线成像图像中的噪声,以获得更真实的图像。在我们的模拟中,我们考虑了高斯噪声和真实噪声,我们使用了基于无约束的最小化算法(如固定步长梯度)、基于约束的优化算法(如投影梯度算法)和基于正则化(全变分)的Rudin-Osher-Fatemi模型(ROF)的算法(使用Chambolle投影)来提高结果质量。最后对所采用的算法进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信