A Bayesian approach to 2D non minimum phase AR identification

G. Jacovitti, A. Neri
{"title":"A Bayesian approach to 2D non minimum phase AR identification","authors":"G. Jacovitti, A. Neri","doi":"10.1109/SPECT.1990.205550","DOIUrl":null,"url":null,"abstract":"The authors deal with estimation of autoregressive (AR) noncausal models of bidimensional signals. The problem of factorizing an image into an excitation with a given marginal p.d.f. and a IIR filter is formulated in a Bayesian conceptual framework. The proposed solution is an iterative procedure for the minimization of the a posteriori risk associated to a given cost function. The procedure implies the inversion of a Toeplitz-block-Toeplitz covariance matrix and the iterated solution of a set of normal equations associated with a nonlinear estimation stage.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The authors deal with estimation of autoregressive (AR) noncausal models of bidimensional signals. The problem of factorizing an image into an excitation with a given marginal p.d.f. and a IIR filter is formulated in a Bayesian conceptual framework. The proposed solution is an iterative procedure for the minimization of the a posteriori risk associated to a given cost function. The procedure implies the inversion of a Toeplitz-block-Toeplitz covariance matrix and the iterated solution of a set of normal equations associated with a nonlinear estimation stage.<>
二维非最小相位AR识别的贝叶斯方法
研究了二维信号的自回归(AR)非因果模型的估计问题。将图像分解为具有给定边缘p.d.f.和IIR滤波器的激励的问题是在贝叶斯概念框架中表述的。所提出的解决方案是一个迭代过程,用于最小化与给定成本函数相关的后验风险。该程序包含Toeplitz-block-Toeplitz协方差矩阵的反演和与非线性估计阶段相关的一组正态方程的迭代解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信