Design and optimisation of high-efficient class-F ULP-PA using envelope tracking supply bias control for long-range low power wireless local area network IEEE 802.11ah standard using 65 nm CMOS technology
IF 1 4区 工程技术Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Ovais Akhter, Najam Muhammad Amin, Razia Zia
{"title":"Design and optimisation of high-efficient class-F ULP-PA using envelope tracking supply bias control for long-range low power wireless local area network IEEE 802.11ah standard using 65 nm CMOS technology","authors":"Muhammad Ovais Akhter, Najam Muhammad Amin, Razia Zia","doi":"10.1049/cds2.12125","DOIUrl":null,"url":null,"abstract":"<p>This article presents the design and optimisation of a sub-1 GHz class-F ultra-low power (ULP) power amplifier (PA) in 65 nm Complementary Metal Oxide Semiconductor (CMOS) technology. An envelope tracking (ET) supply biasing technique is adopted to improve the efficiency of class-F PA. The ET consist of a pre-amp right before the detector in order to enhance the efficiency and save adequate amount of dc power consumption. The PA consists of two cascode cells terminated as class-F with gate-to-drain feedback in order to enhance linearity and limit any harmonic component from the input signal. The novel design consumes a dc power of 3.75 mW, power added efficiency of 37.1%, operating at 915–925 MHz unlicensed band and total saturated output power of 22 dBm including 14 dBm power gain at PA, which qualifies under long-range low power wireless local area network IEEE 802.11ah standard. The inductor-less design for ET supply bias reduces the chip layout size to 0.13 mm<sup>2</sup> only.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 7","pages":"553-568"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12125","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12125","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
This article presents the design and optimisation of a sub-1 GHz class-F ultra-low power (ULP) power amplifier (PA) in 65 nm Complementary Metal Oxide Semiconductor (CMOS) technology. An envelope tracking (ET) supply biasing technique is adopted to improve the efficiency of class-F PA. The ET consist of a pre-amp right before the detector in order to enhance the efficiency and save adequate amount of dc power consumption. The PA consists of two cascode cells terminated as class-F with gate-to-drain feedback in order to enhance linearity and limit any harmonic component from the input signal. The novel design consumes a dc power of 3.75 mW, power added efficiency of 37.1%, operating at 915–925 MHz unlicensed band and total saturated output power of 22 dBm including 14 dBm power gain at PA, which qualifies under long-range low power wireless local area network IEEE 802.11ah standard. The inductor-less design for ET supply bias reduces the chip layout size to 0.13 mm2 only.
期刊介绍:
IET Circuits, Devices & Systems covers the following topics:
Circuit theory and design, circuit analysis and simulation, computer aided design
Filters (analogue and switched capacitor)
Circuit implementations, cells and architectures for integration including VLSI
Testability, fault tolerant design, minimisation of circuits and CAD for VLSI
Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs
Device and process characterisation, device parameter extraction schemes
Mathematics of circuits and systems theory
Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers