COIDS

Subir Halder, M. Conti, Sajal K. Das
{"title":"COIDS","authors":"Subir Halder, M. Conti, Sajal K. Das","doi":"10.1145/3369740.3369787","DOIUrl":null,"url":null,"abstract":"Controller Area Network (CAN) is an in-vehicle communication protocol which provides an efficient and reliable communication link between Electronic Control Units (ECUs) in real-time. Recent studies have shown that attackers can take remote control of the targeted car by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we propose Clock Offset-based Intrusion Detection System (COIDS) to monitor in-vehicle network and detect any intrusion. Precisely, we first measure and then exploit the clock offset of transmitter ECU's clock for fingerprinting ECU. We next leverage the derived fingerprints to construct a baseline of ECU's normal clock behaviour using an active learning technique. Based on the baseline of normal behaviour, we use Cumulative Sum method to detect any abnormal deviation in clock offset. Particularly, if the deviation in clock offset exceeds an unexpected positive or negative value, COIDS declares this change as an intrusion. Further, we use sequential change-point detection technique to determine the exact time of intrusion. We perform exhaustive experiments on real-world publicly available datasets primarily to assess the effectiveness of COIDS against three most potential attacks on CAN, i.e., DoS, impersonation and fuzzy attacks. The results show that COIDS is highly effective in defending all these three attacks. Further, the results show that COIDS considerably faster in detecting intrusion compared to a state-of-the-art solution.","PeriodicalId":240048,"journal":{"name":"Proceedings of the 21st International Conference on Distributed Computing and Networking","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369740.3369787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Controller Area Network (CAN) is an in-vehicle communication protocol which provides an efficient and reliable communication link between Electronic Control Units (ECUs) in real-time. Recent studies have shown that attackers can take remote control of the targeted car by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we propose Clock Offset-based Intrusion Detection System (COIDS) to monitor in-vehicle network and detect any intrusion. Precisely, we first measure and then exploit the clock offset of transmitter ECU's clock for fingerprinting ECU. We next leverage the derived fingerprints to construct a baseline of ECU's normal clock behaviour using an active learning technique. Based on the baseline of normal behaviour, we use Cumulative Sum method to detect any abnormal deviation in clock offset. Particularly, if the deviation in clock offset exceeds an unexpected positive or negative value, COIDS declares this change as an intrusion. Further, we use sequential change-point detection technique to determine the exact time of intrusion. We perform exhaustive experiments on real-world publicly available datasets primarily to assess the effectiveness of COIDS against three most potential attacks on CAN, i.e., DoS, impersonation and fuzzy attacks. The results show that COIDS is highly effective in defending all these three attacks. Further, the results show that COIDS considerably faster in detecting intrusion compared to a state-of-the-art solution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信