Flexible and Self-Adaptive Sense-and-Compress for Sub-MicroWatt Always-on Sensory Recording

Jaro De Roose, Haoming Xin, M. Andraud, P. Harpe, M. Verhelst
{"title":"Flexible and Self-Adaptive Sense-and-Compress for Sub-MicroWatt Always-on Sensory Recording","authors":"Jaro De Roose, Haoming Xin, M. Andraud, P. Harpe, M. Verhelst","doi":"10.1109/ESSCIRC.2018.8494270","DOIUrl":null,"url":null,"abstract":"Miniaturized sensory systems for IoT applications experience a severe power burden from their wireless link and/or embedded storage system. Compressive sensing techniques target data compression before storage and transmission to save power, while minimizing information loss. This work proposes a self-adaptive sense-and-compress system, which consumes only 45-884n W while continuously recording and compressing signals with a bandwidth up to 5kHz. The flexible system uses a combination of off-line Evolutionary Algorithms, and on-line self-adaptivity to constantly adapt to the incoming sensory data statistics, and the current application quality requirements. The 0.27mm2 sense-and-compress interface is integrated in a 65nm CMOS technology, together with an on-board temperature sensor, or can interface with any external sensor. The scalable, self-adaptive system is moreover heavily optimized for low-power and low-leakage, resulting in a tiny, efficient, yet flexible interface allowing always-on sensory monitoring, while consuming 2.5X less power compared to the current State-of-the-Art.","PeriodicalId":355210,"journal":{"name":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2018.8494270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Miniaturized sensory systems for IoT applications experience a severe power burden from their wireless link and/or embedded storage system. Compressive sensing techniques target data compression before storage and transmission to save power, while minimizing information loss. This work proposes a self-adaptive sense-and-compress system, which consumes only 45-884n W while continuously recording and compressing signals with a bandwidth up to 5kHz. The flexible system uses a combination of off-line Evolutionary Algorithms, and on-line self-adaptivity to constantly adapt to the incoming sensory data statistics, and the current application quality requirements. The 0.27mm2 sense-and-compress interface is integrated in a 65nm CMOS technology, together with an on-board temperature sensor, or can interface with any external sensor. The scalable, self-adaptive system is moreover heavily optimized for low-power and low-leakage, resulting in a tiny, efficient, yet flexible interface allowing always-on sensory monitoring, while consuming 2.5X less power compared to the current State-of-the-Art.
柔性和自适应的亚微瓦时刻在线传感记录的传感和压缩
用于物联网应用的小型化传感系统的无线链路和/或嵌入式存储系统会带来严重的功率负担。压缩感知技术的目标是在存储和传输之前对数据进行压缩,以节省电力,同时最大限度地减少信息损失。本文提出了一种自适应感知压缩系统,该系统在连续记录和压缩带宽高达5kHz的信号时,功耗仅为45-884n W。灵活的系统采用离线进化算法和在线自适应相结合的方法,不断适应传入的感官数据统计和当前的应用质量要求。0.27mm2的传感压缩接口集成在65nm CMOS技术中,与板载温度传感器一起,也可以与任何外部传感器接口。此外,可扩展的自适应系统还针对低功耗和低泄漏进行了大量优化,从而形成了一个微小、高效、灵活的界面,允许始终在线的传感器监测,同时消耗的功率比目前最先进的系统低2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信