Learning Long-Horizon Robot Exploration Strategies for Multi-Object Search in Continuous Action Spaces

F. Schmalstieg, Daniel Honerkamp, T. Welschehold, A. Valada
{"title":"Learning Long-Horizon Robot Exploration Strategies for Multi-Object Search in Continuous Action Spaces","authors":"F. Schmalstieg, Daniel Honerkamp, T. Welschehold, A. Valada","doi":"10.48550/arXiv.2205.11384","DOIUrl":null,"url":null,"abstract":"Recent advances in vision-based navigation and exploration have shown impressive capabilities in photorealistic indoor environments. However, these methods still struggle with long-horizon tasks and require large amounts of data to generalize to unseen environments. In this work, we present a novel reinforcement learning approach for multi-object search that combines short-term and long-term reasoning in a single model while avoiding the complexities arising from hierarchical structures. In contrast to existing multi-object search methods that act in granular discrete action spaces, our approach achieves exceptional performance in continuous action spaces. We perform extensive experiments and show that it generalizes to unseen apartment environments with limited data. Furthermore, we demonstrate zero-shot transfer of the learned policies to an office environment in real world experiments.","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.11384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recent advances in vision-based navigation and exploration have shown impressive capabilities in photorealistic indoor environments. However, these methods still struggle with long-horizon tasks and require large amounts of data to generalize to unseen environments. In this work, we present a novel reinforcement learning approach for multi-object search that combines short-term and long-term reasoning in a single model while avoiding the complexities arising from hierarchical structures. In contrast to existing multi-object search methods that act in granular discrete action spaces, our approach achieves exceptional performance in continuous action spaces. We perform extensive experiments and show that it generalizes to unseen apartment environments with limited data. Furthermore, we demonstrate zero-shot transfer of the learned policies to an office environment in real world experiments.
连续动作空间中多目标搜索的机器人长视界探索策略学习
基于视觉的导航和探索的最新进展在逼真的室内环境中显示出令人印象深刻的能力。然而,这些方法仍然在长期任务中挣扎,并且需要大量的数据来推广到看不见的环境。在这项工作中,我们提出了一种用于多目标搜索的新型强化学习方法,该方法在单个模型中结合了短期和长期推理,同时避免了分层结构带来的复杂性。与现有的多目标搜索方法相比,我们的方法在连续动作空间中取得了优异的性能。我们进行了大量的实验,并证明它适用于看不见的公寓环境和有限的数据。此外,我们在现实世界的实验中演示了学习策略到办公环境的零射击转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信