{"title":"A Novel IGBT with Variable Conductance Path Realizing Both Low $V_{on}$ and Turn-off Loss","authors":"Yuxiao Yang, Wanjun Chen, Xinqi Sun, Xiaorui Xu, Yun Xia, Chao Liu, Zhaoji Li, Bo Zhang, Meng Wei, Ping Zhang, Zhong Ren","doi":"10.1109/ISPSD57135.2023.10147482","DOIUrl":null,"url":null,"abstract":"A novel low loss Insulated Gate Bipolar Transistor (IGBT) with variable conductance path (VCP) is proposed in this paper. The conductance of P-doped VCP is controlled by the depletion region generated around the depletion gate (DG). In the blocking state, VCP has high conductance and shorts P-well to the emitter. In the on-state, VCP has low conductance and the current can hardly flow through. Accordingly, the highly doped carrier stored (CS) layer would not affect the breakdown voltage (BV) of VCP-IGBT while it can effectively form the hole barrier to obtain low on-state voltage ($V_{on}$). In addition, when VCP-IGBT is turning off, the depletion region near DG vanished. VCP changes to the high-conductance state and extracts carriers directly out of the device, contributing to a low turn-off loss ($E_{off}$). Simulation results show that, under the same $E_{off}$, VCP-IGBT reduces $V_{on}$ by 20% compared to CSTBT and 17% compared to SBL-IGBT without decreasing static and dynamic blocking capability.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel low loss Insulated Gate Bipolar Transistor (IGBT) with variable conductance path (VCP) is proposed in this paper. The conductance of P-doped VCP is controlled by the depletion region generated around the depletion gate (DG). In the blocking state, VCP has high conductance and shorts P-well to the emitter. In the on-state, VCP has low conductance and the current can hardly flow through. Accordingly, the highly doped carrier stored (CS) layer would not affect the breakdown voltage (BV) of VCP-IGBT while it can effectively form the hole barrier to obtain low on-state voltage ($V_{on}$). In addition, when VCP-IGBT is turning off, the depletion region near DG vanished. VCP changes to the high-conductance state and extracts carriers directly out of the device, contributing to a low turn-off loss ($E_{off}$). Simulation results show that, under the same $E_{off}$, VCP-IGBT reduces $V_{on}$ by 20% compared to CSTBT and 17% compared to SBL-IGBT without decreasing static and dynamic blocking capability.