T. Gessmann, J. Graff, Y.-L. Li, E. Waldron, E. Schubert
{"title":"Ohmic contact technology in III-V nitrides using polarization effects in cap layers","authors":"T. Gessmann, J. Graff, Y.-L. Li, E. Waldron, E. Schubert","doi":"10.1109/LECHPD.2002.1146792","DOIUrl":null,"url":null,"abstract":"A novel technology for low-resistance ohmic contacts to III-V nitrides is presented. The contacts employ polarization-induced electric fields in strained cap layers grown on lattice-mismatched III-V nitride buffer layers. With appropriate choice of the cap layer, the electric field in the cap layer reduces the thickness of the tunnel barrier at the metal contact/semiconductor interface. Design rules for polarization-enhanced contacts are presented giving guidance for composition and thickness of the cap layer for different III-V nitride buffer layers. Experimental results for ohmic contacts with p-type InGaN and GaN cap layers are markedly different from samples without a polarized cap layer thus confirming the effectiveness of polarization-enhanced ohmic contacts.","PeriodicalId":137839,"journal":{"name":"Proceedings. IEEE Lester Eastman Conference on High Performance Devices","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Lester Eastman Conference on High Performance Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LECHPD.2002.1146792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A novel technology for low-resistance ohmic contacts to III-V nitrides is presented. The contacts employ polarization-induced electric fields in strained cap layers grown on lattice-mismatched III-V nitride buffer layers. With appropriate choice of the cap layer, the electric field in the cap layer reduces the thickness of the tunnel barrier at the metal contact/semiconductor interface. Design rules for polarization-enhanced contacts are presented giving guidance for composition and thickness of the cap layer for different III-V nitride buffer layers. Experimental results for ohmic contacts with p-type InGaN and GaN cap layers are markedly different from samples without a polarized cap layer thus confirming the effectiveness of polarization-enhanced ohmic contacts.