Optimization of Multi-Extreme Multidimensional Functions: Population-Based Nature-Inspired Algorithm

S. Rodzin, O. Rodzina, L. Rodzina
{"title":"Optimization of Multi-Extreme Multidimensional Functions: Population-Based Nature-Inspired Algorithm","authors":"S. Rodzin, O. Rodzina, L. Rodzina","doi":"10.1109/RusAutoCon49822.2020.9208113","DOIUrl":null,"url":null,"abstract":"The article presents a population-based algorithm for solving multidimensional optimization problems using a hierarchical multi-population approach. Specific operators are used to supporting a diverse population of solutions, as well as expanding the search space by less promising solutions. The authors evaluate the effectiveness of the proposed algorithm on a set of multivariate functions of Schwefel, Rosenbrock, Rastrigin, and Grivank. The performance of the developed algorithm is compared with the performance of competing algorithms. The researchers register here significant statistical differences. In its turn, it proves in favor of a scalable evolutionary algorithm. Such a tendency is observed for all the considered functions with an increasing dimension of the problem.","PeriodicalId":101834,"journal":{"name":"2020 International Russian Automation Conference (RusAutoCon)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon49822.2020.9208113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The article presents a population-based algorithm for solving multidimensional optimization problems using a hierarchical multi-population approach. Specific operators are used to supporting a diverse population of solutions, as well as expanding the search space by less promising solutions. The authors evaluate the effectiveness of the proposed algorithm on a set of multivariate functions of Schwefel, Rosenbrock, Rastrigin, and Grivank. The performance of the developed algorithm is compared with the performance of competing algorithms. The researchers register here significant statistical differences. In its turn, it proves in favor of a scalable evolutionary algorithm. Such a tendency is observed for all the considered functions with an increasing dimension of the problem.
多极值多维函数的优化:基于种群的自然启发算法
本文提出了一种基于种群的算法,用于使用分层多种群方法解决多维优化问题。特定的操作符用于支持不同的解决方案,以及通过不太有希望的解决方案扩展搜索空间。作者在一组Schwefel, Rosenbrock, Rastrigin和Grivank的多元函数上评估了所提出算法的有效性。将所开发算法的性能与竞争算法的性能进行了比较。研究人员在这里记录了显著的统计差异。反过来,它证明支持可扩展的进化算法。随着问题维度的增加,所考虑的所有函数都有这种趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信