Computationally Efficient Nonlinear Model Predictive Controller for Energy Management of Tracked Hybrid Electric Vehicles

Ningyuan Guo, Xudong Zhang, Y. Zou, Tao Zhang, Dietmar Gohlich
{"title":"Computationally Efficient Nonlinear Model Predictive Controller for Energy Management of Tracked Hybrid Electric Vehicles","authors":"Ningyuan Guo, Xudong Zhang, Y. Zou, Tao Zhang, Dietmar Gohlich","doi":"10.1109/VPPC46532.2019.8952217","DOIUrl":null,"url":null,"abstract":"This paper proposes a computationally efficient energy management strategy of tracked hybrid electric vehicles (THEV) based on nonlinear model predictive control (NMPC). First, the powertrain of THEV is introduced in detailed. Then, the model predictive control problem is illustrated with series of constraints. To improve the computational efficiency in NMPC controller, a nonlinear programming method, continuation/ generalized minimum residual (C/GMRES) algorithm is adopted. Finally, numerical simulation validations are conducted and the in-depth analysis is also demonstrated, which yields the superior computational efficacy and control performance of the proposed strategy.","PeriodicalId":347650,"journal":{"name":"2019 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC46532.2019.8952217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a computationally efficient energy management strategy of tracked hybrid electric vehicles (THEV) based on nonlinear model predictive control (NMPC). First, the powertrain of THEV is introduced in detailed. Then, the model predictive control problem is illustrated with series of constraints. To improve the computational efficiency in NMPC controller, a nonlinear programming method, continuation/ generalized minimum residual (C/GMRES) algorithm is adopted. Finally, numerical simulation validations are conducted and the in-depth analysis is also demonstrated, which yields the superior computational efficacy and control performance of the proposed strategy.
履带混合动力汽车能量管理的计算高效非线性模型预测控制器
提出了一种基于非线性模型预测控制(NMPC)的履带混合动力汽车(THEV)能量高效管理策略。首先,对电动汽车的动力系统进行了详细介绍。然后,用一系列约束说明了模型预测控制问题。为了提高NMPC控制器的计算效率,采用了一种非线性规划方法——连续/广义最小残差(C/GMRES)算法。最后进行了数值仿真验证并进行了深入分析,结果表明该策略具有较好的计算效率和控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信