Muhammad Aqil Emeraldi, Inna Ekawati, Malikus Sumadyo
{"title":"Analisis Sentimen Masyarakat Terhadap Kebijakan Pemerintah Selama Pandemi Covid-19 Menggunakan Algoritma Naïve Bayes","authors":"Muhammad Aqil Emeraldi, Inna Ekawati, Malikus Sumadyo","doi":"10.31599/jsrcs.v3i1.1513","DOIUrl":null,"url":null,"abstract":"The increase in data is very large, one of the sources comes from social media, especially Twitter which talks a lot about Covid-19 . The news through Twitter media regarding the impact of the Covid-19 virus is widely discussed because it causes unrest for the public which has led to the issuance of various government policies with the aim of preventing the spread of Covid-19 . Related to this, it is necessary to conduct a sentiment analysis of the text contained in the Twitter media. In this study, a sentiment analysis process was carried out related to public sentiment towards government policies during the Covid-19 pandemic in Indonesia on Twitter social media using the Naive Bayes Classifier method where the data used was classified into 2 sentiment values, namely positive and negative sentiment. The data used are 300 positive tweets data and 300 negative tweets data, where 80% of the total data is used as training data and 20% data is used as test data. Based on the test results, the data with a total of 120 tweets obtained the results of measuring the recall value of 93.33%, precision 93.33%, F-Score 93.33% and an average accuracy of 93.33%. \n \nKeywords: Covid-19 , naive bayes classification, sentiment analysis. \n \nAbstrak \n \nPertambahan data yang sangat banyak, salah satu sumbernya berasal dari media sosial khususnya Twitter yang banyak membahas Covid-19 . Pemberitaan melalui media Twitter mengenai dampak dari virus Covid-19 marak dibicarakan karena menimbulkan keresahan bagi masyarakat yang menyebabkan dikeluarkannya berbagai kebijakan pemerintah dengan tujuan untuk mencegah penyebaran Covid-19 . Terkait hal tersebut perlu dilakukan sentimen analisis terhadap teks yang terdapat pada media Twitter. Pada penelitian ini, dilakukan proses sentimen analisis terkait sentimen masyarakat terhadap kebijakan pemerintah selama pandemi Covid-19 di Indonesia pada sosial media Twitter dengan menggunakan metode Naive Bayes Classifier dimana data yang digunakan digolongkan menjadi 2 nilai sentimen yaitu sentimen positif dan negatif. Data yang digunakan sebanyak 300 data tweets positif dan 300 data tweets negatif, dimana 80% dari keseluruhan data digunakan sebagai data latih dan 20% data digunakan sebagai data uji. Berdasarkan hasil pengujian, data dengan jumlah sebanyak 120 tweet diperoleh hasil pengukuran nilai recall 93.33%, precission 93.33%, F-Score 93.33% serta rata-rata akurasi 93.33%. \n \nKata kunci: analisis sentimen, Covid-19 , klasifikasi naive bayes.","PeriodicalId":132318,"journal":{"name":"Journal of Students‘ Research in Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Students‘ Research in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31599/jsrcs.v3i1.1513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in data is very large, one of the sources comes from social media, especially Twitter which talks a lot about Covid-19 . The news through Twitter media regarding the impact of the Covid-19 virus is widely discussed because it causes unrest for the public which has led to the issuance of various government policies with the aim of preventing the spread of Covid-19 . Related to this, it is necessary to conduct a sentiment analysis of the text contained in the Twitter media. In this study, a sentiment analysis process was carried out related to public sentiment towards government policies during the Covid-19 pandemic in Indonesia on Twitter social media using the Naive Bayes Classifier method where the data used was classified into 2 sentiment values, namely positive and negative sentiment. The data used are 300 positive tweets data and 300 negative tweets data, where 80% of the total data is used as training data and 20% data is used as test data. Based on the test results, the data with a total of 120 tweets obtained the results of measuring the recall value of 93.33%, precision 93.33%, F-Score 93.33% and an average accuracy of 93.33%.
Keywords: Covid-19 , naive bayes classification, sentiment analysis.
Abstrak
Pertambahan data yang sangat banyak, salah satu sumbernya berasal dari media sosial khususnya Twitter yang banyak membahas Covid-19 . Pemberitaan melalui media Twitter mengenai dampak dari virus Covid-19 marak dibicarakan karena menimbulkan keresahan bagi masyarakat yang menyebabkan dikeluarkannya berbagai kebijakan pemerintah dengan tujuan untuk mencegah penyebaran Covid-19 . Terkait hal tersebut perlu dilakukan sentimen analisis terhadap teks yang terdapat pada media Twitter. Pada penelitian ini, dilakukan proses sentimen analisis terkait sentimen masyarakat terhadap kebijakan pemerintah selama pandemi Covid-19 di Indonesia pada sosial media Twitter dengan menggunakan metode Naive Bayes Classifier dimana data yang digunakan digolongkan menjadi 2 nilai sentimen yaitu sentimen positif dan negatif. Data yang digunakan sebanyak 300 data tweets positif dan 300 data tweets negatif, dimana 80% dari keseluruhan data digunakan sebagai data latih dan 20% data digunakan sebagai data uji. Berdasarkan hasil pengujian, data dengan jumlah sebanyak 120 tweet diperoleh hasil pengukuran nilai recall 93.33%, precission 93.33%, F-Score 93.33% serta rata-rata akurasi 93.33%.
Kata kunci: analisis sentimen, Covid-19 , klasifikasi naive bayes.
数据的增长非常大,其中一个来源来自社交媒体,尤其是推特,它经常谈论Covid-19。通过推特媒体发布的有关新冠病毒影响的消息引起了广泛的讨论,因为它引起了公众的不安,导致政府出台了各种旨在防止新冠病毒传播的政策。与此相关,有必要对Twitter媒体中包含的文本进行情感分析。在本研究中,使用朴素贝叶斯分类器方法对印度尼西亚Covid-19大流行期间Twitter社交媒体上的公众对政府政策的情绪进行了情绪分析过程,其中使用的数据分为2个情绪值,即积极情绪和消极情绪。使用的数据为300条正面推文数据和300条负面推文数据,其中80%的数据作为训练数据,20%的数据作为测试数据。从测试结果来看,共有120条推文的数据得到了召回值为93.33%,准确率为93.33%,F-Score为93.33%,平均准确率为93.33%的测量结果。关键词:Covid-19,朴素贝叶斯分类,情感分析【摘要】Pertambahan数据yang sangat banyak, salah satu sumbernya berasal dari media social khususnya Twitter yang banyak member has Covid-19。马来西亚媒体推特mengenai danpak dari病毒Covid-19 markmarkdibicarakan karena menimbulkan keresahan bagi masyarakat yang menyebabkan dikeluarkannya berbagaikebijakan peremintah dengan tutuk menegah penyebaran Covid-19。terkit是一种很简单的情感分析,它是一种很简单的情感分析。Pada penelitian ini, dilakukan情绪分析terkait sentimen masyarakat terhadap kebijakan peremerintah selama新冠肺炎印度尼西亚社交媒体Twitter登根menggunakan方法朴素贝叶斯分类器动态数据yang digunakan digolongkan menjadi 2 nilai情绪yitu情绪积极和消极。数据阳digunakan sebanyak 300数据推文积极,300数据推文消极,dimana 80%达keseluruhan数据digunakan sebagai数据latih丹20%数据digunakan sebagai数据uji。Berdasarkan hasil pengujian, data dengan jumlah sebanyak 120 tweet diperoleh hasil pengukuran nilai查全率93.33%,查准率93.33%,F-Score 93.33%。Kata kunci:分析情绪,Covid-19,克拉西菲卡西朴素贝叶斯。