Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates
L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. Rossell, R. Erni, J. Fompeyrine
{"title":"Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates","authors":"L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. Rossell, R. Erni, J. Fompeyrine","doi":"10.1109/VLSIT.2015.7223666","DOIUrl":null,"url":null,"abstract":"We report on the first demonstration of the CMOS-compatible integration of high-quality InGaAs on insulator (InGaAs-OI) on Si substrates by a novel concept named Confined Epitaxial Lateral Overgrowth (CELO). This method, based on selective epitaxy, only requires the use of standard large-area silicon substrates and typical CMOS processes. It enables the fabrication of InGaAs-OI starting from both bulk and SOI Si wafers. The InGaAs epitaxial structures are characterized by a very low defectivity, and can fulfill the requirements of both ultra-thin-body and fins-based advanced CMOS nodes. Gate-first self-aligned FinFETs (100-nm-long gate, 50-nm-wide fins and 250-nm-wide plug-contacts) with excellent electrical characteristics comparable to start-of-the-art InGaAs MOSFETs on Si are demonstrated, highlighting that this new concept has significant potential to enable introduction of high-mobility channel materials in high-volume manufacturing of advanced CMOS nodes.","PeriodicalId":181654,"journal":{"name":"2015 Symposium on VLSI Technology (VLSI Technology)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on VLSI Technology (VLSI Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2015.7223666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
We report on the first demonstration of the CMOS-compatible integration of high-quality InGaAs on insulator (InGaAs-OI) on Si substrates by a novel concept named Confined Epitaxial Lateral Overgrowth (CELO). This method, based on selective epitaxy, only requires the use of standard large-area silicon substrates and typical CMOS processes. It enables the fabrication of InGaAs-OI starting from both bulk and SOI Si wafers. The InGaAs epitaxial structures are characterized by a very low defectivity, and can fulfill the requirements of both ultra-thin-body and fins-based advanced CMOS nodes. Gate-first self-aligned FinFETs (100-nm-long gate, 50-nm-wide fins and 250-nm-wide plug-contacts) with excellent electrical characteristics comparable to start-of-the-art InGaAs MOSFETs on Si are demonstrated, highlighting that this new concept has significant potential to enable introduction of high-mobility channel materials in high-volume manufacturing of advanced CMOS nodes.