{"title":"Control of Foot-and-Mouth Disease When Vaccines are Not Available","authors":"J. Cummins","doi":"10.29011/2575-789x.000131","DOIUrl":null,"url":null,"abstract":"Vaccination and depopulation are the methods for control of Foot-and-Mouth Disease (FMD). Another tool is needed to manage FMD Virus (FMDV) if sero-type vaccines are unavailable. The USDA plans to vaccinate cattle if there is a major FMDV outbreak in the USA, but this plan is hampered by the lack of a stockpile of FMDV vaccines to treat millions of animals in a timely fashion. In the absence of FMDV specific vaccines strategies to induce or administer interferon (IFN) might limit FMDV replication and disease in cattle and swine. A group of USDA Animal Research Service (ARS) scientists have reported that the FMDV establishes infection in susceptible cells/hosts by its ability to subvert key host defenses, specifically the inducible IFN response. FMDV inhibits production of IFN alpha (α) [l] and blocks a key IFNinducible, antiviral pathway, i.e.Double-Stranded RNA (dsRNA) dependent Protein Kinase R (PKR) [2]. Moreover, FMD Virion Protein 1 (VP1) has been specifically identified as a viral-origin IFN suppressor molecule by interacting with soluble resistancerelated calcium protein sorcin [3]. Since a key FMDV control method by host cells is suppression of IFNα production by FMDV-infected cells then exogenous treatment with IFNα or induction of endogenous IFN should help control FMD. Indeed, this vulnerability of FMDV to IFN has led to a novel viral disease control strategy using recombinant replication-defective human adenovirus 5 vector containing various species IFN genes. Results varied by species.","PeriodicalId":386740,"journal":{"name":"Journal of Vaccines, Immunology and Immunopathology","volume":"3 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vaccines, Immunology and Immunopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29011/2575-789x.000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccination and depopulation are the methods for control of Foot-and-Mouth Disease (FMD). Another tool is needed to manage FMD Virus (FMDV) if sero-type vaccines are unavailable. The USDA plans to vaccinate cattle if there is a major FMDV outbreak in the USA, but this plan is hampered by the lack of a stockpile of FMDV vaccines to treat millions of animals in a timely fashion. In the absence of FMDV specific vaccines strategies to induce or administer interferon (IFN) might limit FMDV replication and disease in cattle and swine. A group of USDA Animal Research Service (ARS) scientists have reported that the FMDV establishes infection in susceptible cells/hosts by its ability to subvert key host defenses, specifically the inducible IFN response. FMDV inhibits production of IFN alpha (α) [l] and blocks a key IFNinducible, antiviral pathway, i.e.Double-Stranded RNA (dsRNA) dependent Protein Kinase R (PKR) [2]. Moreover, FMD Virion Protein 1 (VP1) has been specifically identified as a viral-origin IFN suppressor molecule by interacting with soluble resistancerelated calcium protein sorcin [3]. Since a key FMDV control method by host cells is suppression of IFNα production by FMDV-infected cells then exogenous treatment with IFNα or induction of endogenous IFN should help control FMD. Indeed, this vulnerability of FMDV to IFN has led to a novel viral disease control strategy using recombinant replication-defective human adenovirus 5 vector containing various species IFN genes. Results varied by species.