Detecting sequence and structure homology via an integrative kernel: A case-study in recognizing enzymes

Isye Arieshanti, M. Bodén, S. Maetschke, Fabian A. Buske
{"title":"Detecting sequence and structure homology via an integrative kernel: A case-study in recognizing enzymes","authors":"Isye Arieshanti, M. Bodén, S. Maetschke, Fabian A. Buske","doi":"10.1109/CIBCB.2009.4925706","DOIUrl":null,"url":null,"abstract":"Sequence and structure are complementary pieces of information that can be used to infer protein function. We study and compare sequence, structure and sequence-structure integrative kernels to recognize proteins with enzymatic function. Using a support-vector machine, we show that kernels that combine sequence and structure information typically perform better (AUC 0.73) at this task than kernels that exploit either type of information exclusively. We find that the feature space of structure kernels complements that of sequence kernels, making both sources of similarity more accessible to kernel methods","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence and structure are complementary pieces of information that can be used to infer protein function. We study and compare sequence, structure and sequence-structure integrative kernels to recognize proteins with enzymatic function. Using a support-vector machine, we show that kernels that combine sequence and structure information typically perform better (AUC 0.73) at this task than kernels that exploit either type of information exclusively. We find that the feature space of structure kernels complements that of sequence kernels, making both sources of similarity more accessible to kernel methods
通过整合核检测序列和结构同源性:一个识别酶的案例研究
序列和结构是互补的信息片段,可以用来推断蛋白质的功能。我们通过对序列、结构和序列-结构整合核的研究和比较来识别具有酶功能的蛋白质。使用支持向量机,我们发现结合序列和结构信息的核通常比只利用其中任何一种信息的核执行得更好(AUC为0.73)。我们发现结构核的特征空间与序列核的特征空间是互补的,使得核方法更容易获得这两个相似源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信