Adaptive PID controller based on Lyapunov function neural network for time delay temperature control

Muhammad Saleheen Aftab, Muhammad Shafiq
{"title":"Adaptive PID controller based on Lyapunov function neural network for time delay temperature control","authors":"Muhammad Saleheen Aftab, Muhammad Shafiq","doi":"10.1109/IEEEGCC.2015.7060094","DOIUrl":null,"url":null,"abstract":"Temperature is an important control variable in industrial processes. In this paper, an adaptive PID control algorithm has been discussed to track the process temperature. The presented control algorithm employs Lyapunov function based artificial neural networks for online tuning of proportional, integral and derivative actions. This algorithm has been successfully tested on the laboratory temperature control process trainer. For comparative analysis, the results have been contrasted with the conventional PID scheme. The experimental findings show that improved and stable tracking is achieved with the proposed adaptive PID controller.","PeriodicalId":127217,"journal":{"name":"2015 IEEE 8th GCC Conference & Exhibition","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th GCC Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2015.7060094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Temperature is an important control variable in industrial processes. In this paper, an adaptive PID control algorithm has been discussed to track the process temperature. The presented control algorithm employs Lyapunov function based artificial neural networks for online tuning of proportional, integral and derivative actions. This algorithm has been successfully tested on the laboratory temperature control process trainer. For comparative analysis, the results have been contrasted with the conventional PID scheme. The experimental findings show that improved and stable tracking is achieved with the proposed adaptive PID controller.
基于Lyapunov函数神经网络的自适应PID控制器用于时延温度控制
温度是工业过程中一个重要的控制变量。本文讨论了一种自适应PID控制算法来跟踪过程温度。该控制算法采用基于李雅普诺夫函数的人工神经网络对比例动作、积分动作和导数动作进行在线整定。该算法已成功地在实验室温控过程训练器上进行了测试。为了进行对比分析,将结果与传统PID方案进行了对比。实验结果表明,所提出的自适应PID控制器具有较好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信