{"title":"The Major Cause of Earthquake Disasters: Shear Bandings","authors":"T. Hsu","doi":"10.5772/INTECHOPEN.74718","DOIUrl":null,"url":null,"abstract":"In the last two decades, due to disasters happening around the world have been recorded precisely. People have begun to understand that earthquakes fall under several catego-ries. Most of the earthquake-induced catastrophes, including fallen bridges, building col- lapses, soil liquefaction, and landslides, can only appear in shear banding zones induced by tectonic earthquakes. It is important to mention that tectonic earthquakes are different from other earthquakes because, in addition to the seismic vibration effect present in all earthquakes, tectonic earthquakes have a shear banding effect. In a tectonic earthquake, the shear banding energy can be more than 90% of the total earthquake energy, and the primary cause of earthquake disasters is the presence of the shear banding. In the past, the cause of earthquake disasters has been generally identified by structure dynamics research -ers, without any proof, as the insufficiency of seismic-vibration resistant forces. Therefore, the modification of building codes and specifications has only focused on increasing these resistance forces. However, this type of specification modification cannot guarantee that an earthquake-resistant design structure would not fail due to shear banding. Thus, it is the objective of this study to present appropriate earthquake disaster prevention methods for a tectonic earthquake.","PeriodicalId":237065,"journal":{"name":"Earthquakes - Forecast, Prognosis and Earthquake Resistant Construction","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes - Forecast, Prognosis and Earthquake Resistant Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last two decades, due to disasters happening around the world have been recorded precisely. People have begun to understand that earthquakes fall under several catego-ries. Most of the earthquake-induced catastrophes, including fallen bridges, building col- lapses, soil liquefaction, and landslides, can only appear in shear banding zones induced by tectonic earthquakes. It is important to mention that tectonic earthquakes are different from other earthquakes because, in addition to the seismic vibration effect present in all earthquakes, tectonic earthquakes have a shear banding effect. In a tectonic earthquake, the shear banding energy can be more than 90% of the total earthquake energy, and the primary cause of earthquake disasters is the presence of the shear banding. In the past, the cause of earthquake disasters has been generally identified by structure dynamics research -ers, without any proof, as the insufficiency of seismic-vibration resistant forces. Therefore, the modification of building codes and specifications has only focused on increasing these resistance forces. However, this type of specification modification cannot guarantee that an earthquake-resistant design structure would not fail due to shear banding. Thus, it is the objective of this study to present appropriate earthquake disaster prevention methods for a tectonic earthquake.