Composite squared-error algorithm for training feedforward neural networks

D. Gonzaga, M. de Campos, S. L. Netto
{"title":"Composite squared-error algorithm for training feedforward neural networks","authors":"D. Gonzaga, M. de Campos, S. L. Netto","doi":"10.1109/ADFSP.1998.685707","DOIUrl":null,"url":null,"abstract":"A new algorithm, the so-called composite squared-error (CSE) algorithm, for training neural networks is presented. The CSE algorithm, whose roots lie in the field of adaptive IIR filtering, is able to avoid suboptimal solutions and associated saddle points, thus achieving lower values of the associated mean-squared-error function in a fewer number of iterations. For that matter, the CSE algorithm can regularly outperform other existing training schemes in most applications where neural networks are employed.","PeriodicalId":424855,"journal":{"name":"1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADFSP.1998.685707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new algorithm, the so-called composite squared-error (CSE) algorithm, for training neural networks is presented. The CSE algorithm, whose roots lie in the field of adaptive IIR filtering, is able to avoid suboptimal solutions and associated saddle points, thus achieving lower values of the associated mean-squared-error function in a fewer number of iterations. For that matter, the CSE algorithm can regularly outperform other existing training schemes in most applications where neural networks are employed.
训练前馈神经网络的复合平方误差算法
提出了一种新的神经网络训练算法,即复合平方误差(CSE)算法。CSE算法的根源在于自适应IIR滤波领域,能够避免次优解和关联鞍点,从而在较少的迭代次数下实现关联均方误差函数的较低值。就这一点而言,CSE算法在大多数使用神经网络的应用中可以定期优于其他现有的训练方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信