{"title":"Design of a High-Speed Asynchronous Turbo Decoder","authors":"P. Golani, G. Dimou, M. Prakash, P. Beerel","doi":"10.1109/ASYNC.2007.16","DOIUrl":null,"url":null,"abstract":"This paper explores the advantages of high performance asynchronous circuits in a semi-custom standard cell environment for high-throughput turbo coding. Turbo codes are high-performance error correction codes used in applications where maximal information transfer is needed over a limited-bandwidth communication link in the presence of data corrupting noise. Specifically we designed an asynchronous high-speed turbo decoder that can be potentially used for new wireless communications protocols with close to OC-12 throughputs. The design has been implemented using a new static single-track-full-buffer (SSTFB) standard cell library in IBM 0.18 mum technology that provides low latency, fast cycle-time, and more robustness to noise than previously studied single-track full-buffer technology (STFB). A high-speed synchronous counterpart using the same high-speed architecture is designed in the same technology for comparison. The results demonstrate that for a variety of network constraints, the asynchronous design provides advantages in throughput per area. Moreover, the asynchronous design can support very low-latency network constraints not achievable with the synchronous alternative.","PeriodicalId":136595,"journal":{"name":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2007.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper explores the advantages of high performance asynchronous circuits in a semi-custom standard cell environment for high-throughput turbo coding. Turbo codes are high-performance error correction codes used in applications where maximal information transfer is needed over a limited-bandwidth communication link in the presence of data corrupting noise. Specifically we designed an asynchronous high-speed turbo decoder that can be potentially used for new wireless communications protocols with close to OC-12 throughputs. The design has been implemented using a new static single-track-full-buffer (SSTFB) standard cell library in IBM 0.18 mum technology that provides low latency, fast cycle-time, and more robustness to noise than previously studied single-track full-buffer technology (STFB). A high-speed synchronous counterpart using the same high-speed architecture is designed in the same technology for comparison. The results demonstrate that for a variety of network constraints, the asynchronous design provides advantages in throughput per area. Moreover, the asynchronous design can support very low-latency network constraints not achievable with the synchronous alternative.