Key issues in conducting sentiment analysis on Arabic social media text

S. Ahmed, M. Pasquier, G. Qadah
{"title":"Key issues in conducting sentiment analysis on Arabic social media text","authors":"S. Ahmed, M. Pasquier, G. Qadah","doi":"10.1109/INNOVATIONS.2013.6544396","DOIUrl":null,"url":null,"abstract":"The problem of extracting sentiments from text is a very complex task, in particular due to the significant amount of Natural Language Processing (NLP) required. This task becomes even more difficult when dealing with morphologically rich languages such as Modern Standard Arabic (MSA) and when processing brief, noisy texts such as “tweets” or “Facebook statuses”. This paper highlights key issues researchers are facing and innovative approaches that have been developed when performing subjectivity and sentiment analysis (SSA) on Arabic text in general and Arabic social media text in particular. A preprocessing phase to sentiment analysis is proposed and shown to noticeably improve the results of sentiment extraction from Arabic social media data.","PeriodicalId":438270,"journal":{"name":"2013 9th International Conference on Innovations in Information Technology (IIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2013.6544396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

The problem of extracting sentiments from text is a very complex task, in particular due to the significant amount of Natural Language Processing (NLP) required. This task becomes even more difficult when dealing with morphologically rich languages such as Modern Standard Arabic (MSA) and when processing brief, noisy texts such as “tweets” or “Facebook statuses”. This paper highlights key issues researchers are facing and innovative approaches that have been developed when performing subjectivity and sentiment analysis (SSA) on Arabic text in general and Arabic social media text in particular. A preprocessing phase to sentiment analysis is proposed and shown to noticeably improve the results of sentiment extraction from Arabic social media data.
对阿拉伯语社交媒体文本进行情感分析的关键问题
从文本中提取情感是一项非常复杂的任务,特别是由于需要大量的自然语言处理(NLP)。当处理形态丰富的语言,如现代标准阿拉伯语(MSA),以及处理简短、嘈杂的文本,如“tweet”或“Facebook状态”时,这项任务变得更加困难。本文重点介绍了研究人员在对阿拉伯语文本特别是阿拉伯社交媒体文本进行主观性和情感分析(SSA)时面临的关键问题和开发的创新方法。提出了一种情感分析的预处理阶段,并证明了该阶段可以显著改善从阿拉伯社交媒体数据中提取情感的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信