Highly-Adaptive Mixed-Precision MAC Unit for Smart and Low-Power Edge Computing

Guillaume Devic, M. France-Pillois, Jérémie Salles, G. Sassatelli, A. Gamatie
{"title":"Highly-Adaptive Mixed-Precision MAC Unit for Smart and Low-Power Edge Computing","authors":"Guillaume Devic, M. France-Pillois, Jérémie Salles, G. Sassatelli, A. Gamatie","doi":"10.1109/NEWCAS50681.2021.9462745","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are compute- and memory-intensive. Their execution at the edge on resource-constrained embedded systems is challenging. Data quantization, i.e. data bit-width reduction, contributes to reducing de-facto the memory bandwidth requirement. In order to best exploit this bit-width reduction, a prevailing approach consists of tailored hardware accelerators. Another approach relies on general-purpose compute units with Single Instruction Multiple Data (SIMD) support for reduced data bit-width precision, as in ARM Cortex-M [1] or RISC-V based RI5CY [2] processors. However, such processors only handle a few predefined bit-width ranges, e.g. 8-bit and 16-bit only for the ARM SIMD.This paper proposes a flexible architecture of Multiply-and-Accumulate (MAC) unit allowing asymmetric multiplication for operand sizes in powers of 2, up to 32 bits. The synthesis of this architecture in 28nm FD-SOI technology shows 10% and 25% reduction in area and dynamic power respectively, compared to the RI5CY MAC unit. From the energy-efficiency point of view, up to 50% improvements are achieved.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning algorithms are compute- and memory-intensive. Their execution at the edge on resource-constrained embedded systems is challenging. Data quantization, i.e. data bit-width reduction, contributes to reducing de-facto the memory bandwidth requirement. In order to best exploit this bit-width reduction, a prevailing approach consists of tailored hardware accelerators. Another approach relies on general-purpose compute units with Single Instruction Multiple Data (SIMD) support for reduced data bit-width precision, as in ARM Cortex-M [1] or RISC-V based RI5CY [2] processors. However, such processors only handle a few predefined bit-width ranges, e.g. 8-bit and 16-bit only for the ARM SIMD.This paper proposes a flexible architecture of Multiply-and-Accumulate (MAC) unit allowing asymmetric multiplication for operand sizes in powers of 2, up to 32 bits. The synthesis of this architecture in 28nm FD-SOI technology shows 10% and 25% reduction in area and dynamic power respectively, compared to the RI5CY MAC unit. From the energy-efficiency point of view, up to 50% improvements are achieved.
用于智能和低功耗边缘计算的高自适应混合精度MAC单元
机器学习算法是计算和内存密集型的。它们在资源受限的嵌入式系统的边缘执行是具有挑战性的。数据量化,即数据位宽减少,有助于减少事实上的内存带宽需求。为了最好地利用这种位宽减少,一种流行的方法由定制的硬件加速器组成。另一种方法依赖于具有单指令多数据(SIMD)支持的通用计算单元,以降低数据位宽精度,如ARM Cortex-M[1]或基于RISC-V的RI5CY[2]处理器。然而,这样的处理器只处理几个预定义的位宽范围,例如ARM SIMD的8位和16位。本文提出了一种灵活的乘法累加(MAC)单元结构,允许对操作数的2次方进行非对称乘法,最高可达32位。与RI5CY MAC单元相比,采用28nm FD-SOI技术合成的该架构的面积和动态功率分别减少了10%和25%。从能源效率的角度来看,实现了高达50%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信