Area minimization of MPRM circuits

Hui Li, Pengjun Wang, Jing Dai
{"title":"Area minimization of MPRM circuits","authors":"Hui Li, Pengjun Wang, Jing Dai","doi":"10.1109/ASICON.2009.5351633","DOIUrl":null,"url":null,"abstract":"In the minimization of the Mix Polarity Reed-Muller expression (MPRM) circuits, MPRM with different polarities can be got directly from a given Sum-Of-Product expression (SOP). Based on Kronecker Functional Decision Diagrams (KFDDs), a Polarity Conversion Technique (PCT) is proposed. MPRM under a desired polarity is obtained using PCT algorithm, then an Exhaustive-search Technique based on Gray Code (ETGC) is developed. ETGC algorithm is used for deriving MPRM with all polarities. Some experiments are performed comparing with optimizing the Fixed Polarity Reed-Muller expression (FPRM). Simulation results show that the minimal MPRM is smaller than FPRM, the average area savings is 60.7%.1","PeriodicalId":446584,"journal":{"name":"2009 IEEE 8th International Conference on ASIC","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2009.5351633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the minimization of the Mix Polarity Reed-Muller expression (MPRM) circuits, MPRM with different polarities can be got directly from a given Sum-Of-Product expression (SOP). Based on Kronecker Functional Decision Diagrams (KFDDs), a Polarity Conversion Technique (PCT) is proposed. MPRM under a desired polarity is obtained using PCT algorithm, then an Exhaustive-search Technique based on Gray Code (ETGC) is developed. ETGC algorithm is used for deriving MPRM with all polarities. Some experiments are performed comparing with optimizing the Fixed Polarity Reed-Muller expression (FPRM). Simulation results show that the minimal MPRM is smaller than FPRM, the average area savings is 60.7%.1
MPRM电路的面积最小化
在混合极性Reed-Muller表达式(MPRM)电路的最小化中,不同极性的MPRM可以直接从给定的和积表达式(SOP)中得到。基于Kronecker功能决策图(kfdd),提出了一种极性转换技术(PCT)。利用PCT算法获得了理想极性下的最大可重构矩阵,并在此基础上提出了一种基于Gray Code (ETGC)的穷举搜索技术。采用ETGC算法推导出所有极性的MPRM。并与优化固定极性Reed-Muller表达式(FPRM)进行了实验比较。仿真结果表明,最小MPRM比FPRM更小,平均节省面积为60.7%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信