{"title":"Generating Summaries Through Unigram and Bigram: Text Summarization","authors":"Nesreen Alsharman, I. Pivkina","doi":"10.4018/ijitwe.2020010105","DOIUrl":null,"url":null,"abstract":"This article describes a new method for generating extractive summaries directly via unigram and bigram extraction techniques. The methodology uses the selective part of speech tagging to extract significant unigrams and bigrams from a set of sentences. Extracted unigrams and bigrams along with other features are used to build a final summary. A new selective rule-based part of speech tagging system is developed that concentrates on the most important parts of speech for summarizations: noun, verb, and adjective. Other parts of speech such as prepositions, articles, adverbs, etc., play a lesser role in determining the meaning of sentences; therefore, they are not considered when choosing significant unigrams and bigrams. The proposed method is tested on two problem domains: citations and opinosis data sets. Results show that the proposed method performs better than Text-Rank, LexRank, and Edmundson summarization methods. The proposed method is general enough to summarize texts from any domain.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.2020010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This article describes a new method for generating extractive summaries directly via unigram and bigram extraction techniques. The methodology uses the selective part of speech tagging to extract significant unigrams and bigrams from a set of sentences. Extracted unigrams and bigrams along with other features are used to build a final summary. A new selective rule-based part of speech tagging system is developed that concentrates on the most important parts of speech for summarizations: noun, verb, and adjective. Other parts of speech such as prepositions, articles, adverbs, etc., play a lesser role in determining the meaning of sentences; therefore, they are not considered when choosing significant unigrams and bigrams. The proposed method is tested on two problem domains: citations and opinosis data sets. Results show that the proposed method performs better than Text-Rank, LexRank, and Edmundson summarization methods. The proposed method is general enough to summarize texts from any domain.