{"title":"Non-hysteretic ferroelectric tunnel FET with improved conductance at Curie temperature","authors":"L. Lattanzio, G. Salvatore, A. Ionescu","doi":"10.1109/DRC.2010.5551937","DOIUrl":null,"url":null,"abstract":"Tunnel FETs (TFETs) have attracted much interest in the last decade for their potential to be used as small slope switches [1,2], suitable for future logic circuits operating with a supply voltage smaller than 0.5 V and for reduced Ioff levels. It has been shown that these devices highly benefit from a high gate dielectric constant, as the gate-channel capacitive coupling is improved, positively impacting the band-to-band tunneling at low voltages [3]. Temperature-dependent performances have also been studied: models and experiments show a slight degradation of TFET subthreshold slope and an increase in the Ion with temperature, due to energy bandgap narrowing [4,5]. In parallel, the integration of ferroelectric materials in MOSFET gate stacks is being considered for enhancing their subthreshold swing [6]. Furthermore, ferroelectric materials show a unique temperature behavior. According to Landau's theory, at the Curie temperature (TC) the relative dielectric permittivity εFe ideally diverges [7] (Fig. 1).","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Tunnel FETs (TFETs) have attracted much interest in the last decade for their potential to be used as small slope switches [1,2], suitable for future logic circuits operating with a supply voltage smaller than 0.5 V and for reduced Ioff levels. It has been shown that these devices highly benefit from a high gate dielectric constant, as the gate-channel capacitive coupling is improved, positively impacting the band-to-band tunneling at low voltages [3]. Temperature-dependent performances have also been studied: models and experiments show a slight degradation of TFET subthreshold slope and an increase in the Ion with temperature, due to energy bandgap narrowing [4,5]. In parallel, the integration of ferroelectric materials in MOSFET gate stacks is being considered for enhancing their subthreshold swing [6]. Furthermore, ferroelectric materials show a unique temperature behavior. According to Landau's theory, at the Curie temperature (TC) the relative dielectric permittivity εFe ideally diverges [7] (Fig. 1).