A novel pruning approach using expert knowledge

A. M. Mahmood, M. Kuppa
{"title":"A novel pruning approach using expert knowledge","authors":"A. M. Mahmood, M. Kuppa","doi":"10.1109/INTERACT.2010.5706189","DOIUrl":null,"url":null,"abstract":"Many traditional pruning methods assume that all the datasets are equally probable and equally important. Thus, they apply equal pruning to all the datasets. However, in real-world classification problems, all the datasets are not equal. Consequently, considering equal pruning rate tends to generate inefficient and large size decision trees. Therefore, we propose a practical algorithm to deal with the data specific classification problem when there are datasets with different properties. In this paper, First, we computed the data specific pruning values for each dataset. Then, we used expert knowledge to find inexact pruning value. Finally, we integrated those values in a well established pruning technique to form Expert Knowledge based Pruning (EKBP). We empirically validated the analysis with publicly available 40 datasets from UCI on four existing techniques. Both the analytical and experimental results have shown that our proposed method achieves reduction of tree size and retains equal or better accuracy.","PeriodicalId":201931,"journal":{"name":"INTERACT-2010","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERACT-2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERACT.2010.5706189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many traditional pruning methods assume that all the datasets are equally probable and equally important. Thus, they apply equal pruning to all the datasets. However, in real-world classification problems, all the datasets are not equal. Consequently, considering equal pruning rate tends to generate inefficient and large size decision trees. Therefore, we propose a practical algorithm to deal with the data specific classification problem when there are datasets with different properties. In this paper, First, we computed the data specific pruning values for each dataset. Then, we used expert knowledge to find inexact pruning value. Finally, we integrated those values in a well established pruning technique to form Expert Knowledge based Pruning (EKBP). We empirically validated the analysis with publicly available 40 datasets from UCI on four existing techniques. Both the analytical and experimental results have shown that our proposed method achieves reduction of tree size and retains equal or better accuracy.
一种利用专家知识的新颖修剪方法
许多传统的剪枝方法假设所有的数据集都是等概率的,同样重要。因此,它们对所有数据集进行相等的剪枝。然而,在现实世界的分类问题中,并非所有的数据集都是相等的。因此,考虑相等的剪枝率往往会产生效率低下且规模较大的决策树。因此,我们提出了一种实用的算法来处理具有不同属性的数据集时的数据特定分类问题。在本文中,我们首先计算了每个数据集的数据特定修剪值。然后,利用专家知识找到不精确的剪枝值。最后,我们将这些值整合到一个完善的修剪技术中,形成基于专家知识的修剪(EKBP)。我们用UCI公开提供的40个数据集对四种现有技术进行了实证验证。分析结果和实验结果都表明,本文提出的方法既能减小树的大小,又能保持相同或更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信