Arrhythmia Detection Based on Hybrid Features of T-Wave in Electrocardiogram

Raghu Nanjundegowda, Vaibhav Meshram
{"title":"Arrhythmia Detection Based on Hybrid Features of T-Wave in Electrocardiogram","authors":"Raghu Nanjundegowda, Vaibhav Meshram","doi":"10.4018/978-1-7998-1192-3.CH001","DOIUrl":null,"url":null,"abstract":"An electrocardiogram (ECG) is used as one of the important diagnostic tools for the detection of the health of a heart. An automatic heart abnormality identification methods sense numerous abnormalities or arrhythmia and decrease the physician's pressure as well as share their workload. In ECG analysis, the main focus is to enhance degree of accuracy and include a number of heart diseases that can be classified. In this chapter, arrhythmia classification is proposed using hybrid features of T-wave in ECG. The classification system consists of majorly three phases, windowing technique, feature extraction, and classification. This classifier categorizes the normal and abnormal signals efficiently. The experimental analysis showed that the hybrid features arrhythmia classification performance of accuracy approximately 98.3%, specificity 98.0%, and sensitivity 98.6% using MIT-BIH database.","PeriodicalId":173264,"journal":{"name":"Advances in Systems Analysis, Software Engineering, and High Performance Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Analysis, Software Engineering, and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-1192-3.CH001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

An electrocardiogram (ECG) is used as one of the important diagnostic tools for the detection of the health of a heart. An automatic heart abnormality identification methods sense numerous abnormalities or arrhythmia and decrease the physician's pressure as well as share their workload. In ECG analysis, the main focus is to enhance degree of accuracy and include a number of heart diseases that can be classified. In this chapter, arrhythmia classification is proposed using hybrid features of T-wave in ECG. The classification system consists of majorly three phases, windowing technique, feature extraction, and classification. This classifier categorizes the normal and abnormal signals efficiently. The experimental analysis showed that the hybrid features arrhythmia classification performance of accuracy approximately 98.3%, specificity 98.0%, and sensitivity 98.6% using MIT-BIH database.
基于心电图t波混合特征的心律失常检测
心电图(ECG)是检测心脏健康的重要诊断工具之一。心脏异常自动识别方法可以感知多种异常或心律失常,减轻了医生的压力,分担了医生的工作量。在心电图分析中,主要关注的是提高准确率,包括一些可以分类的心脏病。本章提出利用心电图t波的混合特征对心律失常进行分类。该分类系统主要包括三个阶段:窗口技术、特征提取和分类。该分类器能有效地对正常和异常信号进行分类。实验分析表明,使用MIT-BIH数据库,该混合特征的心律失常分类准确率约为98.3%,特异性约为98.0%,灵敏度约为98.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信