{"title":"Arrhythmia Detection Based on Hybrid Features of T-Wave in Electrocardiogram","authors":"Raghu Nanjundegowda, Vaibhav Meshram","doi":"10.4018/978-1-7998-1192-3.CH001","DOIUrl":null,"url":null,"abstract":"An electrocardiogram (ECG) is used as one of the important diagnostic tools for the detection of the health of a heart. An automatic heart abnormality identification methods sense numerous abnormalities or arrhythmia and decrease the physician's pressure as well as share their workload. In ECG analysis, the main focus is to enhance degree of accuracy and include a number of heart diseases that can be classified. In this chapter, arrhythmia classification is proposed using hybrid features of T-wave in ECG. The classification system consists of majorly three phases, windowing technique, feature extraction, and classification. This classifier categorizes the normal and abnormal signals efficiently. The experimental analysis showed that the hybrid features arrhythmia classification performance of accuracy approximately 98.3%, specificity 98.0%, and sensitivity 98.6% using MIT-BIH database.","PeriodicalId":173264,"journal":{"name":"Advances in Systems Analysis, Software Engineering, and High Performance Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Analysis, Software Engineering, and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-1192-3.CH001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
An electrocardiogram (ECG) is used as one of the important diagnostic tools for the detection of the health of a heart. An automatic heart abnormality identification methods sense numerous abnormalities or arrhythmia and decrease the physician's pressure as well as share their workload. In ECG analysis, the main focus is to enhance degree of accuracy and include a number of heart diseases that can be classified. In this chapter, arrhythmia classification is proposed using hybrid features of T-wave in ECG. The classification system consists of majorly three phases, windowing technique, feature extraction, and classification. This classifier categorizes the normal and abnormal signals efficiently. The experimental analysis showed that the hybrid features arrhythmia classification performance of accuracy approximately 98.3%, specificity 98.0%, and sensitivity 98.6% using MIT-BIH database.