O-POCO: Online point cloud compression mapping for visual odometry and SLAM

Luis Contreras, W. Mayol-Cuevas
{"title":"O-POCO: Online point cloud compression mapping for visual odometry and SLAM","authors":"Luis Contreras, W. Mayol-Cuevas","doi":"10.1109/ICRA.2017.7989523","DOIUrl":null,"url":null,"abstract":"This paper presents O-POCO, a visual odometry and SLAM system that makes online decisions regarding what to map and what to ignore. It takes a point cloud from classical SfM and aims to sample it on-line by selecting map features useful for future 6D relocalisation. We use the camera's traveled trajectory to compartamentalize the point cloud, along with visual and spatial information to sample and compress the map. We propose and evaluate a number of different information layers such as the descriptor information's relative entropy, map-feature occupancy grid, and the point cloud's geometry error. We compare our proposed system against both SfM, and online and offline ORB-SLAM using publicly available datasets in addition to our own. Results show that our online compression strategy is capable of outperforming the baseline even for conditions when the number of features per key-frame used for mapping is four times less.","PeriodicalId":195122,"journal":{"name":"2017 IEEE International Conference on Robotics and Automation (ICRA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2017.7989523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents O-POCO, a visual odometry and SLAM system that makes online decisions regarding what to map and what to ignore. It takes a point cloud from classical SfM and aims to sample it on-line by selecting map features useful for future 6D relocalisation. We use the camera's traveled trajectory to compartamentalize the point cloud, along with visual and spatial information to sample and compress the map. We propose and evaluate a number of different information layers such as the descriptor information's relative entropy, map-feature occupancy grid, and the point cloud's geometry error. We compare our proposed system against both SfM, and online and offline ORB-SLAM using publicly available datasets in addition to our own. Results show that our online compression strategy is capable of outperforming the baseline even for conditions when the number of features per key-frame used for mapping is four times less.
O-POCO:用于视觉里程计和SLAM的在线点云压缩映射
本文介绍了O-POCO,一个视觉里程计和SLAM系统,它可以在线决定哪些是要映射的,哪些是要忽略的。它从经典SfM中获取点云,并通过选择对未来6D重新定位有用的地图特征对其进行在线采样。我们使用相机的移动轨迹来划分点云,以及视觉和空间信息来采样和压缩地图。我们提出并评估了许多不同的信息层,如描述符信息的相对熵、地图特征占用网格和点云的几何误差。除了我们自己的数据集外,我们还使用公开可用的数据集将我们提出的系统与SfM、在线和离线ORB-SLAM进行了比较。结果表明,即使用于映射的每个关键帧的特征数量减少了四倍,我们的在线压缩策略也能够优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信