Combination of gait multiple features at matching score level

S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar
{"title":"Combination of gait multiple features at matching score level","authors":"S. Ismail, Muhammad Imran Ahmad, M. I. N. Isa, S. Anwar","doi":"10.1109/ICED.2016.7804688","DOIUrl":null,"url":null,"abstract":"This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.","PeriodicalId":410290,"journal":{"name":"2016 3rd International Conference on Electronic Design (ICED)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2016.7804688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focus to analyze several fusion rule at matching score level to combine important features extracted from gait sequence images for human identification system. Gait sequence image is a non-stationary data and can be modelled using a statistical learning technique. The propose technique consists of three different stages. The pre-processing stage computes the average silhouette images to capture the important information and get a better representation for gait silhouette data. Then a principle component analysis (PCA) technique is applied on the average silhouette to extract the important gait features and reduce a dimension of gait data. Three different features are fused at matching score level by using sum, product and max rule. The proposed algorithm has been tested using a benchmark CASIA datasets. The experimental results show that the best recognition rate is 90% when the fusion is performed using sum rule.
在匹配评分水平上组合步态多特征
本文重点分析了在匹配分数水平上的几种融合规则,以结合从步态序列图像中提取的重要特征用于人体识别系统。步态序列图像是一种非平稳数据,可以使用统计学习技术进行建模。提议技术包括三个不同的阶段。预处理阶段计算平均轮廓图像,以捕获重要信息,更好地表示步态轮廓数据。然后对平均轮廓进行主成分分析,提取步态的重要特征,对步态数据进行降维处理。利用sum、product和max规则将三个不同的特征融合在匹配分数水平上。该算法已在CASIA基准数据集上进行了测试。实验结果表明,采用和规则进行融合时,识别率最高可达90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信