Henrique Kessler, Murilo Bohlke, L. Rosa, M. Porto, V. Camargo
{"title":"Calibration of Logical Effort Transistor Sizing for On-the-Fly Low-Power Supergate Design","authors":"Henrique Kessler, Murilo Bohlke, L. Rosa, M. Porto, V. Camargo","doi":"10.1109/LASCAS53948.2022.9789079","DOIUrl":null,"url":null,"abstract":"Gate sizing has been widely studied to improve power dissipation and performance characteristics in VLSI design. Recent developments allow the automatic design of static CMOS complex gates for a reduction in power dissipation. It is possible to observe a lack of different transistor sizing in these works using minimum transistor dimension or the Logical Effort technique. In this work, we propose a methodology to adapt the Logical Effort technique for low-power applications. Results show significant improvements on up to 99.9% of the studied cases in power-performance trade-off across multiple simulation environments for a 45nm CMOS technology.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gate sizing has been widely studied to improve power dissipation and performance characteristics in VLSI design. Recent developments allow the automatic design of static CMOS complex gates for a reduction in power dissipation. It is possible to observe a lack of different transistor sizing in these works using minimum transistor dimension or the Logical Effort technique. In this work, we propose a methodology to adapt the Logical Effort technique for low-power applications. Results show significant improvements on up to 99.9% of the studied cases in power-performance trade-off across multiple simulation environments for a 45nm CMOS technology.