Hierarchical Machine Learning for IoT Anomaly Detection in SDN

Perekebode Amangele, M. Reed, M. Al-Naday, N. Thomos, M. Nowak
{"title":"Hierarchical Machine Learning for IoT Anomaly Detection in SDN","authors":"Perekebode Amangele, M. Reed, M. Al-Naday, N. Thomos, M. Nowak","doi":"10.1109/InfoTech.2019.8860878","DOIUrl":null,"url":null,"abstract":"The Internet of Things is a fast emerging technology, however, there have been a significant number of security challenges that have hindered its adoption. This work explores the use of machine learning methods for anomaly detection in network traffic of an IoT network that is connected through a Software Defined Network (SDN). The use of SDN allows a hierarchical approach to machine learning with the aim of reducing the packet level processing of anomaly detection at the edge through applying additional, centralized, machine learning in the SDN controller. For the sake of evaluation, we compare several supervised classification algorithms using a publicly available dataset. The results support a decision-tree based approach and show that the proposed solution promises a considerable reduction in the per-packet processing at the network edge compared to a single stage classifier.","PeriodicalId":179336,"journal":{"name":"2019 International Conference on Information Technologies (InfoTech)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InfoTech.2019.8860878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The Internet of Things is a fast emerging technology, however, there have been a significant number of security challenges that have hindered its adoption. This work explores the use of machine learning methods for anomaly detection in network traffic of an IoT network that is connected through a Software Defined Network (SDN). The use of SDN allows a hierarchical approach to machine learning with the aim of reducing the packet level processing of anomaly detection at the edge through applying additional, centralized, machine learning in the SDN controller. For the sake of evaluation, we compare several supervised classification algorithms using a publicly available dataset. The results support a decision-tree based approach and show that the proposed solution promises a considerable reduction in the per-packet processing at the network edge compared to a single stage classifier.
SDN中物联网异常检测的分层机器学习
物联网是一项快速发展的新兴技术,然而,存在着大量的安全挑战,阻碍了它的采用。这项工作探讨了使用机器学习方法在通过软件定义网络(SDN)连接的物联网网络的网络流量中进行异常检测。SDN的使用允许采用分层方法进行机器学习,目的是通过在SDN控制器中应用额外的、集中的机器学习来减少边缘异常检测的数据包级处理。为了评估,我们使用公开可用的数据集比较了几种监督分类算法。结果支持基于决策树的方法,并表明与单阶段分类器相比,所提出的解决方案承诺大大减少网络边缘的每包处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信