Sistema de recomendação para apoiar a construção de gráficos com dados estatísticos

Taissa Abdalla Filgueiras de Sousa, Simone D. J. Barbosa
{"title":"Sistema de recomendação para apoiar a construção de gráficos com dados estatísticos","authors":"Taissa Abdalla Filgueiras de Sousa, Simone D. J. Barbosa","doi":"10.17771/pucrio.acad.22030","DOIUrl":null,"url":null,"abstract":"Research on statistical data visualization emphasizes the need for systems that assist in decision-making and visual analysis. Having found problems in chart construction by novice users, we researched the following question: How can we support novice users to create efficient visualizations with statistical data? To address this question, this paper describes ViSC, a recommender system that supports the interactive construction of charts to visualize statistical data by offering a series of recommendations based on the selected data and on the user interaction with the tool. The system explores a visualization ontology to offer a set of graphs that help to answer information-based questions related to the current graph data. By traversing the recommended graphs through their related questions, the user implicitly acquires knowledge both on the domain and on visualization resources that better represent the domain concepts of interest. This paper also reports a qualitative study conducted to evaluate ViSC, using two methods: the Semiotic Inspection Method (SIM) and a Retrospective Communicability Evaluation (RCE) ---a combination of the Communicability Evaluation Method (CEM) and Retrospective Think Aloud Protocol. We first analyze how the questions influence the users' traversal through the graph and then address the broader question. We concluded the questions were important to generate efficient visualizations and thus, an efficient solution to help novice users in chart constructions.","PeriodicalId":154697,"journal":{"name":"Simpósio Brasileiro de Fatores Humanos em Sistemas Computacionais","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simpósio Brasileiro de Fatores Humanos em Sistemas Computacionais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17771/pucrio.acad.22030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Research on statistical data visualization emphasizes the need for systems that assist in decision-making and visual analysis. Having found problems in chart construction by novice users, we researched the following question: How can we support novice users to create efficient visualizations with statistical data? To address this question, this paper describes ViSC, a recommender system that supports the interactive construction of charts to visualize statistical data by offering a series of recommendations based on the selected data and on the user interaction with the tool. The system explores a visualization ontology to offer a set of graphs that help to answer information-based questions related to the current graph data. By traversing the recommended graphs through their related questions, the user implicitly acquires knowledge both on the domain and on visualization resources that better represent the domain concepts of interest. This paper also reports a qualitative study conducted to evaluate ViSC, using two methods: the Semiotic Inspection Method (SIM) and a Retrospective Communicability Evaluation (RCE) ---a combination of the Communicability Evaluation Method (CEM) and Retrospective Think Aloud Protocol. We first analyze how the questions influence the users' traversal through the graph and then address the broader question. We concluded the questions were important to generate efficient visualizations and thus, an efficient solution to help novice users in chart constructions.
推荐系统,支持构建带有统计数据的图表
对统计数据可视化的研究强调了对辅助决策和可视化分析的系统的需求。在发现新手用户在图表构建中存在的问题后,我们研究了以下问题:如何支持新手用户使用统计数据创建高效的可视化?为了解决这个问题,本文描述了ViSC,一个推荐系统,它支持图表的交互式构建,通过基于所选数据和用户与该工具的交互提供一系列推荐来可视化统计数据。该系统探索了一个可视化本体,以提供一组图形,帮助回答与当前图形数据相关的基于信息的问题。通过遍历推荐的图的相关问题,用户可以隐式地获得关于领域和可视化资源的知识,从而更好地表示感兴趣的领域概念。本文还报道了一项评估ViSC的定性研究,使用两种方法:符号学检查法(SIM)和回顾性可沟通性评估法(RCE)——可沟通性评估法(CEM)和回顾性有声思考协议的结合。我们首先分析问题如何影响用户在图中的遍历,然后解决更广泛的问题。我们得出的结论是,这些问题对于生成有效的可视化非常重要,因此,它们是帮助新手用户构建图表的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信