Nonlinear Model-Predictive Control Based on Quasi-ARX Radial-Basis Function-Neural-Network

I. Sutrisno, Mohammad Abu Jami'in, Jinglu Hu, M. Marhaban, N. Mariun
{"title":"Nonlinear Model-Predictive Control Based on Quasi-ARX Radial-Basis Function-Neural-Network","authors":"I. Sutrisno, Mohammad Abu Jami'in, Jinglu Hu, M. Marhaban, N. Mariun","doi":"10.1109/AMS.2014.30","DOIUrl":null,"url":null,"abstract":"A nonlinear model-predictive control (NMPC) is demonstrated for nonlinear systems using an improved fuzzy switching law. The proposed moving average filter fuzzy switching law (MAFFSL) is composed of a quasi-ARX radial basis function neural network (RBFNN) prediction model and a fuzzy switching law. An adaptive controller is designed based on a NMPC. a MAFFSL is constructed based on the system switching criterion function which is better than the (ON/OFF) switching law and a RBFNN is used to replace the neural network (NN) in the quasi-ARX black box model which is understood in terms of parameters and is not an absolute black box model, in comparison with NN. The proposed controller performance is verified through numerical simulations to demonstrate the effectiveness of the proposed method.","PeriodicalId":198621,"journal":{"name":"2014 8th Asia Modelling Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Asia Modelling Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A nonlinear model-predictive control (NMPC) is demonstrated for nonlinear systems using an improved fuzzy switching law. The proposed moving average filter fuzzy switching law (MAFFSL) is composed of a quasi-ARX radial basis function neural network (RBFNN) prediction model and a fuzzy switching law. An adaptive controller is designed based on a NMPC. a MAFFSL is constructed based on the system switching criterion function which is better than the (ON/OFF) switching law and a RBFNN is used to replace the neural network (NN) in the quasi-ARX black box model which is understood in terms of parameters and is not an absolute black box model, in comparison with NN. The proposed controller performance is verified through numerical simulations to demonstrate the effectiveness of the proposed method.
基于准arx径向基函数神经网络的非线性模型预测控制
提出了一种基于改进模糊切换律的非线性模型预测控制方法。所提出的移动平均滤波器模糊切换律(MAFFSL)由准arx径向基函数神经网络(RBFNN)预测模型和模糊切换律组成。设计了一种基于NMPC的自适应控制器。基于优于(on /OFF)切换律的系统切换判据函数构造了MAFFSL,并使用RBFNN代替准arx黑箱模型中的神经网络(NN),与神经网络相比,准arx黑箱模型从参数上理解,不是绝对黑箱模型。通过数值仿真验证了所提控制器的性能,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信