Значения весовой системы, отвечающей алгебре Ли $\mathfrak{sl}_2$, на полных двудольных графах

Полина Александровна Филиппова, P. A. Filippova
{"title":"Значения весовой системы, отвечающей алгебре Ли $\\mathfrak{sl}_2$, на полных двудольных графах","authors":"Полина Александровна Филиппова, P. A. Filippova","doi":"10.4213/faa3756","DOIUrl":null,"url":null,"abstract":"В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем - функций на хордовых диаграммах, удовлетворяющих 4-членным соотношениям. В частности, весовая система сопоставляется крашеному многочлену Джонса. Ее легко описать в терминах алгебры Ли $\\mathfrak{sl}_2$ (так называемая $\\mathfrak{sl}_2$-весовая система), однако вычисление ее значения на конкретной хордовой диаграмме является вычислительно сложной задачей, и, как следствие, ее явные значения известны лишь для весьма узких семейств хордовых диаграмм.\nВ статье дана явная формула для значений $\\mathfrak{sl}_2$-весовой системы на семействе хордовых диаграмм, состоящем из диаграмм, граф пересечений которых является полным двудольным с числом вершин в одной из долей не более трех.\nОсновным инструментом в вычислении является рекуррентное соотношение Чмутова-Варченко. Кроме того, мы выводим явные формулы для проекции на подпространство примитивных элементов вдоль пространства разложимых в подалгебрах Хопфа алгебры Хопфа графов, порожденных полными двудольными графами с числом вершин в одной из долей не более трех. Как результат мы вычисляем значения $\\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм с такими графами пересечений. Полученные нами результаты подтверждают ряд гипотез С. К. Ландо о значениях $\\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм на подпространство примитивных элементов.подпространство примитивных.","PeriodicalId":332168,"journal":{"name":"Функциональный анализ и его приложения","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Функциональный анализ и его приложения","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/faa3756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем - функций на хордовых диаграммах, удовлетворяющих 4-членным соотношениям. В частности, весовая система сопоставляется крашеному многочлену Джонса. Ее легко описать в терминах алгебры Ли $\mathfrak{sl}_2$ (так называемая $\mathfrak{sl}_2$-весовая система), однако вычисление ее значения на конкретной хордовой диаграмме является вычислительно сложной задачей, и, как следствие, ее явные значения известны лишь для весьма узких семейств хордовых диаграмм. В статье дана явная формула для значений $\mathfrak{sl}_2$-весовой системы на семействе хордовых диаграмм, состоящем из диаграмм, граф пересечений которых является полным двудольным с числом вершин в одной из долей не более трех. Основным инструментом в вычислении является рекуррентное соотношение Чмутова-Варченко. Кроме того, мы выводим явные формулы для проекции на подпространство примитивных элементов вдоль пространства разложимых в подалгебрах Хопфа алгебры Хопфа графов, порожденных полными двудольными графами с числом вершин в одной из долей не более трех. Как результат мы вычисляем значения $\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм с такими графами пересечений. Полученные нами результаты подтверждают ряд гипотез С. К. Ландо о значениях $\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм на подпространство примитивных элементов.подпространство примитивных.
与李代数/ mathfrak (sl) _2相对应的重量系统值
在瓦西里耶夫的理论中,终端节点的不变量是用重量系统来描述的——函数在满足四项项比率的弦图中。特别是,重量系统与琼斯染色的多项式相匹配。它很容易用李(mathfrak)代数(mathfrak)来描述,但是用特定的弦图来计算它的值是一个计算问题,因此,它的明显值只适用于非常狭窄的弦图家族。本文明确规定了由字符串图组成的弦图(mathfrak)的数值公式。计算的主要工具是chmutov - varchenko递归关系。此外,我们还引入了清晰的公式,将原始元素的子空间投射到哈波夫多边形中分解的哈波夫图上,这些图的顶点数不超过三分之一。因此,我们计算了具有这些交叉图的弦图映射中的mathfrak值。我们得到的结果证实了c . k .兰多关于弦图对原始元素子空间的影响的一系列假设。原始空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信