{"title":"Значения весовой системы, отвечающей алгебре Ли $\\mathfrak{sl}_2$, на полных двудольных графах","authors":"Полина Александровна Филиппова, P. A. Filippova","doi":"10.4213/faa3756","DOIUrl":null,"url":null,"abstract":"В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем - функций на хордовых диаграммах, удовлетворяющих 4-членным соотношениям. В частности, весовая система сопоставляется крашеному многочлену Джонса. Ее легко описать в терминах алгебры Ли $\\mathfrak{sl}_2$ (так называемая $\\mathfrak{sl}_2$-весовая система), однако вычисление ее значения на конкретной хордовой диаграмме является вычислительно сложной задачей, и, как следствие, ее явные значения известны лишь для весьма узких семейств хордовых диаграмм.\nВ статье дана явная формула для значений $\\mathfrak{sl}_2$-весовой системы на семействе хордовых диаграмм, состоящем из диаграмм, граф пересечений которых является полным двудольным с числом вершин в одной из долей не более трех.\nОсновным инструментом в вычислении является рекуррентное соотношение Чмутова-Варченко. Кроме того, мы выводим явные формулы для проекции на подпространство примитивных элементов вдоль пространства разложимых в подалгебрах Хопфа алгебры Хопфа графов, порожденных полными двудольными графами с числом вершин в одной из долей не более трех. Как результат мы вычисляем значения $\\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм с такими графами пересечений. Полученные нами результаты подтверждают ряд гипотез С. К. Ландо о значениях $\\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм на подпространство примитивных элементов.подпространство примитивных.","PeriodicalId":332168,"journal":{"name":"Функциональный анализ и его приложения","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Функциональный анализ и его приложения","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/faa3756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем - функций на хордовых диаграммах, удовлетворяющих 4-членным соотношениям. В частности, весовая система сопоставляется крашеному многочлену Джонса. Ее легко описать в терминах алгебры Ли $\mathfrak{sl}_2$ (так называемая $\mathfrak{sl}_2$-весовая система), однако вычисление ее значения на конкретной хордовой диаграмме является вычислительно сложной задачей, и, как следствие, ее явные значения известны лишь для весьма узких семейств хордовых диаграмм.
В статье дана явная формула для значений $\mathfrak{sl}_2$-весовой системы на семействе хордовых диаграмм, состоящем из диаграмм, граф пересечений которых является полным двудольным с числом вершин в одной из долей не более трех.
Основным инструментом в вычислении является рекуррентное соотношение Чмутова-Варченко. Кроме того, мы выводим явные формулы для проекции на подпространство примитивных элементов вдоль пространства разложимых в подалгебрах Хопфа алгебры Хопфа графов, порожденных полными двудольными графами с числом вершин в одной из долей не более трех. Как результат мы вычисляем значения $\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм с такими графами пересечений. Полученные нами результаты подтверждают ряд гипотез С. К. Ландо о значениях $\mathfrak{sl}_2$-весовой системы на проекциях хордовых диаграмм на подпространство примитивных элементов.подпространство примитивных.