M. Azuma, M. Morita, M. Hazeyama, Y. Kuroda, A. Daikoku, M. Inoue
{"title":"Fundamental characteristics of a claw pole motor using additional ferrite magnets for HEV","authors":"M. Azuma, M. Morita, M. Hazeyama, Y. Kuroda, A. Daikoku, M. Inoue","doi":"10.1109/IEVC.2012.6183175","DOIUrl":null,"url":null,"abstract":"This paper presents a specification of a claw pole motor that has a field excitation coil for hybrid electric vehicles. The characteristic of the claw pole motor is no use of Dy and Tb which can increase torque capability. The filed excitation which can be generated by controlling filed current in a rotor provides us controllable efficiency. Additional ferrite magnets are installed between the rotor poles for the purpose of increasing torque capability due to moderating magnetic saturation of each claw. FE analysis and experimental results are shown in this paper.","PeriodicalId":134818,"journal":{"name":"2012 IEEE International Electric Vehicle Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Electric Vehicle Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2012.6183175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a specification of a claw pole motor that has a field excitation coil for hybrid electric vehicles. The characteristic of the claw pole motor is no use of Dy and Tb which can increase torque capability. The filed excitation which can be generated by controlling filed current in a rotor provides us controllable efficiency. Additional ferrite magnets are installed between the rotor poles for the purpose of increasing torque capability due to moderating magnetic saturation of each claw. FE analysis and experimental results are shown in this paper.