Effect of deep and tail grain boundary trap states on the performance of poly-ZnO TFT

Saurabh Jaiswal, S. Akula, Rupam Gosawmi, M. Goswami, Kavindra Kandpal
{"title":"Effect of deep and tail grain boundary trap states on the performance of poly-ZnO TFT","authors":"Saurabh Jaiswal, S. Akula, Rupam Gosawmi, M. Goswami, Kavindra Kandpal","doi":"10.1109/EDKCON56221.2022.10032887","DOIUrl":null,"url":null,"abstract":"The presence of grain boundaries in polycrystalline ZnO hugely impacts its electrical characteristic. In this work, we have studied the influence of double exponential grain boundary (GB) traps on the performance of a ZnO TFT. It is assumed that all kinds of defects in the ZnO/ gate-dielectric interface and GB are effectively localized in GB traps. Moreover, traps are thermally activated as per the multiple trapping and release (MTR) theory. Using Sentaurus TCAD, the device's behavior has been analyzed and it has been found that the ZnO TFT employing high-κ gate-dielectric exhibits minimal degradation in TFT characteristics in the presence of traps. In the presence of deep state traps, N<inf>deep</inf> =1 ×10<sup>10</sup> cm<sup>−2</sup>eV<sup>−1</sup> and tail state traps N<inf>tail</inf> = 2.85 × 10<sup>13</sup> cm<sup>−2</sup>eV<sup>−1</sup>, TFT with gate-dielectric HfO<inf>2</inf> exhibited least threshold voltage of 0.44 V & a subthreshold slope of 96 mV, and the highest field-effect mobility of 3.6 cm<sup>2</sup>/V − s compared to TFT with SiO<inf>2</inf> and Si<inf>3</inf>N<inf>4</inf> gate-dielectric.","PeriodicalId":296883,"journal":{"name":"2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON56221.2022.10032887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of grain boundaries in polycrystalline ZnO hugely impacts its electrical characteristic. In this work, we have studied the influence of double exponential grain boundary (GB) traps on the performance of a ZnO TFT. It is assumed that all kinds of defects in the ZnO/ gate-dielectric interface and GB are effectively localized in GB traps. Moreover, traps are thermally activated as per the multiple trapping and release (MTR) theory. Using Sentaurus TCAD, the device's behavior has been analyzed and it has been found that the ZnO TFT employing high-κ gate-dielectric exhibits minimal degradation in TFT characteristics in the presence of traps. In the presence of deep state traps, Ndeep =1 ×1010 cm−2eV−1 and tail state traps Ntail = 2.85 × 1013 cm−2eV−1, TFT with gate-dielectric HfO2 exhibited least threshold voltage of 0.44 V & a subthreshold slope of 96 mV, and the highest field-effect mobility of 3.6 cm2/V − s compared to TFT with SiO2 and Si3N4 gate-dielectric.
深晶界和尾晶界阱态对zno TFT性能的影响
多晶ZnO中晶界的存在极大地影响了其电学特性。在这项工作中,我们研究了双指数晶界(GB)陷阱对ZnO TFT性能的影响。假设ZnO/栅极介质界面和GB中的各种缺陷都有效地局限于GB陷阱中。此外,根据多重捕获和释放(MTR)理论,圈闭是热激活的。利用Sentaurus TCAD分析了该器件的行为,发现采用高κ栅极介电介质的ZnO TFT在存在陷阱的情况下表现出最小的TFT特性退化。在深态阱Ndeep =1 ×1010 cm−2eV−1和尾态阱Ntail = 2.85 × 1013 cm−2eV−1的情况下,与SiO2和Si3N4栅极介质TFT相比,HfO2栅极介质TFT的阈值电压最小,为0.44 V,亚阈值斜率为96 mV,场效应迁移率最高,为3.6 cm2/V−s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信