A Model Predictive Voltage Control using Virtual Space Vectors for Grid-Forming Energy Storage Converters

W. Alhosaini, Yue Zhao
{"title":"A Model Predictive Voltage Control using Virtual Space Vectors for Grid-Forming Energy Storage Converters","authors":"W. Alhosaini, Yue Zhao","doi":"10.1109/APEC.2019.8722151","DOIUrl":null,"url":null,"abstract":"Sinusoidal output voltages with low harmonic distortion can be achieved using three-level converters along with LC filters, which have been proven to be suitable for energy storage systems (ESSs). Model predictive control (MPC) has been applied to such energy storage converters due to its simplicity and effectiveness. However, selecting the weighting factor of the additional neutral-point (NP) voltage balancing term in the cost function is time consuming and may also affect the main objective of MPC. To address this issue, in this paper, additional virtual space vectors (VSVs), which do not affect the NP capacitor voltages, are adopted in the proposed MPC. Both simulation and experimental results using controller hardware-in-the-loop are presented to show that NP capacitor voltages can be well controlled using a particularly small NP voltage balancing weighting factor in the cost function. In addition, the total harmonic distortion of the voltage at the point of common coupling is reduced while retaining the fast dynamic response of MPC.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8722151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sinusoidal output voltages with low harmonic distortion can be achieved using three-level converters along with LC filters, which have been proven to be suitable for energy storage systems (ESSs). Model predictive control (MPC) has been applied to such energy storage converters due to its simplicity and effectiveness. However, selecting the weighting factor of the additional neutral-point (NP) voltage balancing term in the cost function is time consuming and may also affect the main objective of MPC. To address this issue, in this paper, additional virtual space vectors (VSVs), which do not affect the NP capacitor voltages, are adopted in the proposed MPC. Both simulation and experimental results using controller hardware-in-the-loop are presented to show that NP capacitor voltages can be well controlled using a particularly small NP voltage balancing weighting factor in the cost function. In addition, the total harmonic distortion of the voltage at the point of common coupling is reduced while retaining the fast dynamic response of MPC.
基于虚拟空间矢量的并网储能变换器模型预测电压控制
使用三电平变换器和LC滤波器可以实现具有低谐波失真的正弦输出电压,这已被证明适用于储能系统(ess)。模型预测控制(MPC)以其简单、有效的特点被广泛应用于储能变换器中。然而,成本函数中附加中性点(NP)电压平衡项权重因子的选取既耗时又可能影响MPC的主要目标。为了解决这个问题,本文在提出的MPC中采用了不影响NP电容器电压的附加虚拟空间矢量(vsv)。利用控制器硬件在环的仿真和实验结果表明,在代价函数中使用一个特别小的NP电压平衡加权因子可以很好地控制NP电容器电压。此外,在保持MPC快速动态响应的同时,减小了共耦合点电压的总谐波畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信