Wenguang Yang, Haibo Yu, Yuechao Wang, Wenxue Wang, Lianqing Liu
{"title":"Tumor cellular behaviors regulated by controlled microenvionment","authors":"Wenguang Yang, Haibo Yu, Yuechao Wang, Wenxue Wang, Lianqing Liu","doi":"10.1109/NANOMED.2015.7492503","DOIUrl":null,"url":null,"abstract":"Recognizing the microenvironmental cues that affect cellular morphology and mechanical properties will contribute to our general understanding of tumor cells, as well as provide approaches to develop effective anti-cancer therapies. Constructing the designated physical microenvironment in which the tumor cells exist is important for cancer cell studies. Although numerous studies have examined how the local interactions between tumor cells and their surrounding microenvironment can regulate cellular behavior, the methods required are very complex and time-consuming. In this manuscript, we describe a light-addressable method to pattern poly-(ethylene) glycol diacrylate (PEGDA) for constructing the surrounding microenvironment of cancer cells, enabling investigation of the effect of the external environment on cancer cell behavior including cell morphology, proliferation, and migration. This is the first method that can be used to simultaneously study all of these behaviors. Using programmable UV exposure, polymerization of the PEGDA solution was induced to create arbitrary shapes with high biocompatibility, and the resistance to cell attachment enabled the PEGDA-coat film to hinder cell adhesion, while the cells grew in the blank area. Moreover, cancer cell morphology, proliferation, and migration were regulated by the controlled microenvironment as determined by our method.","PeriodicalId":187049,"journal":{"name":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2015.7492503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing the microenvironmental cues that affect cellular morphology and mechanical properties will contribute to our general understanding of tumor cells, as well as provide approaches to develop effective anti-cancer therapies. Constructing the designated physical microenvironment in which the tumor cells exist is important for cancer cell studies. Although numerous studies have examined how the local interactions between tumor cells and their surrounding microenvironment can regulate cellular behavior, the methods required are very complex and time-consuming. In this manuscript, we describe a light-addressable method to pattern poly-(ethylene) glycol diacrylate (PEGDA) for constructing the surrounding microenvironment of cancer cells, enabling investigation of the effect of the external environment on cancer cell behavior including cell morphology, proliferation, and migration. This is the first method that can be used to simultaneously study all of these behaviors. Using programmable UV exposure, polymerization of the PEGDA solution was induced to create arbitrary shapes with high biocompatibility, and the resistance to cell attachment enabled the PEGDA-coat film to hinder cell adhesion, while the cells grew in the blank area. Moreover, cancer cell morphology, proliferation, and migration were regulated by the controlled microenvironment as determined by our method.