Planarity in ROMDDs of multiple-valued symmetric functions

J. T. Butler, J. Nowlin, Tsutomu Sasao
{"title":"Planarity in ROMDDs of multiple-valued symmetric functions","authors":"J. T. Butler, J. Nowlin, Tsutomu Sasao","doi":"10.1109/ISMVL.1996.508364","DOIUrl":null,"url":null,"abstract":"We show that a multiple-valued symmetric function has a planar ROMDD (reduced ordered multiple-valued decision diagram) if and only if it is a pseudo-voting function. We show that the number of such functions is (r-1)(n+r, n+1) where r is the number of logic values and n is the number of variables. It follows from this that the fraction of symmetric multiple-valued functions that have planar ROMDDs approaches 0 as n approaches infinity. Further, we show that the worst case and average number of nodes in planar ROMDDs of symmetric functions is n/sup 2/(1/2-1/2r) and n/sup 2/(1/2-1/(r+1)), respectively, when n is large.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We show that a multiple-valued symmetric function has a planar ROMDD (reduced ordered multiple-valued decision diagram) if and only if it is a pseudo-voting function. We show that the number of such functions is (r-1)(n+r, n+1) where r is the number of logic values and n is the number of variables. It follows from this that the fraction of symmetric multiple-valued functions that have planar ROMDDs approaches 0 as n approaches infinity. Further, we show that the worst case and average number of nodes in planar ROMDDs of symmetric functions is n/sup 2/(1/2-1/2r) and n/sup 2/(1/2-1/(r+1)), respectively, when n is large.
多值对称函数的romdd中的平面性
我们证明了多值对称函数具有平面ROMDD(降阶多值决策图)当且仅当它是伪投票函数。我们证明了这样的函数的个数是(r-1)(n+r, n+1),其中r是逻辑值的个数,n是变量的个数。由此可以得出,当n趋于无穷时,具有平面romdd的对称多值函数的分数趋于0。进一步证明,当n较大时,对称函数平面ROMDDs的最坏情况和平均节点数分别为n/sup 2/(1/2-1/2r)和n/sup 2/(1/2-1/2r)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信