Hybrid Cluster based Collaborative Filtering using Firefly and Agglomerative Hierarchical Clustering

Spoorthy G., Sanjeevi Sriram G
{"title":"Hybrid Cluster based Collaborative Filtering using Firefly and Agglomerative Hierarchical Clustering","authors":"Spoorthy G., Sanjeevi Sriram G","doi":"10.24203/ijcit.v10i6.170","DOIUrl":null,"url":null,"abstract":"Recommendation Systems finds the user preferences based on the purchase history of an individual using data mining and machine learning techniques. To reduce the time taken for computation Recommendation systems generally use a pre-processing technique which in turn helps to increase high low performance and over comes over-fitting of data. In this paper, we propose a hybrid collaborative filtering algorithm using firefly and agglomerative hierarchical clustering technique with priority queue and Principle Component Analysis (PCA). We applied our hybrid algorithm on movielens dataset and used Pearson Correlation to obtain Top N recommendations. Experimental results show that the our algorithm delivers accurate and reliable recommendations showing high performance when compared with  existing algorithms.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v10i6.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendation Systems finds the user preferences based on the purchase history of an individual using data mining and machine learning techniques. To reduce the time taken for computation Recommendation systems generally use a pre-processing technique which in turn helps to increase high low performance and over comes over-fitting of data. In this paper, we propose a hybrid collaborative filtering algorithm using firefly and agglomerative hierarchical clustering technique with priority queue and Principle Component Analysis (PCA). We applied our hybrid algorithm on movielens dataset and used Pearson Correlation to obtain Top N recommendations. Experimental results show that the our algorithm delivers accurate and reliable recommendations showing high performance when compared with  existing algorithms.
基于萤火虫和聚集分层聚类的混合聚类协同过滤
推荐系统使用数据挖掘和机器学习技术,根据个人的购买历史发现用户偏好。为了减少计算时间,推荐系统通常使用预处理技术,这反过来有助于提高高性能和克服数据的过度拟合。本文提出了一种基于优先级队列和主成分分析(PCA)的萤火虫和凝聚分层聚类混合协同过滤算法。我们将混合算法应用于movielens数据集,并使用Pearson相关性获得Top N推荐。实验结果表明,与现有算法相比,该算法提供了准确可靠的推荐,具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信