Identification of The Number of Wireless Channel Taps Using Deep Neural Networks

Ahmad M. Jaradat, K. Elgammal, M. K. Özdemir, H. Arslan
{"title":"Identification of The Number of Wireless Channel Taps Using Deep Neural Networks","authors":"Ahmad M. Jaradat, K. Elgammal, M. K. Özdemir, H. Arslan","doi":"10.1109/NEWCAS50681.2021.9462770","DOIUrl":null,"url":null,"abstract":"In wireless communication systems, identifying the number of channel taps offers an enhanced estimation of the channel impulse response (CIR). In this work, efficient identification of the number of wireless channel taps has been achieved via deep neural networks (DNNs), where we modified an existing DNN and analyzed its convergence performance using only the transmitted and received signals of a wireless system. The displayed results demonstrate that the adopted DNN accomplishes superior performance in identifying the number of channel taps, as compared to an existing algorithm called Spectrum Weighted Identification of Signal Sources (SWISS).","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In wireless communication systems, identifying the number of channel taps offers an enhanced estimation of the channel impulse response (CIR). In this work, efficient identification of the number of wireless channel taps has been achieved via deep neural networks (DNNs), where we modified an existing DNN and analyzed its convergence performance using only the transmitted and received signals of a wireless system. The displayed results demonstrate that the adopted DNN accomplishes superior performance in identifying the number of channel taps, as compared to an existing algorithm called Spectrum Weighted Identification of Signal Sources (SWISS).
基于深度神经网络的无线信道抽头数量识别
在无线通信系统中,识别信道抽头的数量可以提高对信道脉冲响应(CIR)的估计。在这项工作中,通过深度神经网络(DNN)实现了无线信道分接数量的有效识别,其中我们修改了现有的DNN,并仅使用无线系统的发送和接收信号分析了其收敛性能。结果表明,与现有的频谱加权信号源识别(SWISS)算法相比,所采用的深度神经网络在识别信道抽头数量方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信