Stochastic Volatility Modeling: Chapter 2 - Local Volatility

L. Bergomi
{"title":"Stochastic Volatility Modeling: Chapter 2 - Local Volatility","authors":"L. Bergomi","doi":"10.2139/ssrn.2713103","DOIUrl":null,"url":null,"abstract":"This is Chapter 2 of Stochastic Volatility Modeling, published by CRC/Chapman & Hall.In this chapter the local volatility model is surveyed as a market model for the underlying together with its associated vanilla options.First, relationships of implied to local volatilities are derived, as well as approximations for skew and curvature. Exact and approximate techniques for taking dividends into account are presented.We then turn to the dynamics of the local volatility model. We introduce the Skew Tickiness Ratio (SSR) and derive approximate formulas for the SSR and volatilities of volatilities in the local volatility model.We also examine future skews.We then consider the delta and carry P&L of a hedged option position. We derive the expression of the market-model delta of the local volatility model and discuss the relationship between sticky-strike and market-model deltas. We characterize the gamma/theta break-even levels of a hedged position and show that the local volatility model is indeed a market model.We then derive the expression of the vega-hedge portfolio.Markov-functional models are considered next.Finally, we survey the Uncertain Volatility Model and its usage.A digest summarizes key points.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2713103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This is Chapter 2 of Stochastic Volatility Modeling, published by CRC/Chapman & Hall.In this chapter the local volatility model is surveyed as a market model for the underlying together with its associated vanilla options.First, relationships of implied to local volatilities are derived, as well as approximations for skew and curvature. Exact and approximate techniques for taking dividends into account are presented.We then turn to the dynamics of the local volatility model. We introduce the Skew Tickiness Ratio (SSR) and derive approximate formulas for the SSR and volatilities of volatilities in the local volatility model.We also examine future skews.We then consider the delta and carry P&L of a hedged option position. We derive the expression of the market-model delta of the local volatility model and discuss the relationship between sticky-strike and market-model deltas. We characterize the gamma/theta break-even levels of a hedged position and show that the local volatility model is indeed a market model.We then derive the expression of the vega-hedge portfolio.Markov-functional models are considered next.Finally, we survey the Uncertain Volatility Model and its usage.A digest summarizes key points.
随机波动模型:第2章-局部波动
这是随机波动模型的第二章,由CRC/Chapman & Hall出版。在本章中,局部波动率模型被调查作为一个市场模型的基础及其相关的香草期权。首先,推导了隐含波动率与局部波动率的关系,以及偏度和曲率的近似。提出了考虑股息的精确和近似技术。然后我们转向局部波动模型的动力学。在局部波动率模型中引入了偏态波动率,推导了偏态波动率和波动率的近似公式。我们还研究了未来的偏差。然后我们考虑一个对冲期权头寸的增量和carry损益。导出了局部波动率模型的市场模型delta的表达式,并讨论了粘击与市场模型delta之间的关系。我们描述了对冲头寸的gamma/theta盈亏平衡水平,并表明局部波动率模型确实是一个市场模型。然后,我们推导了vega-hedge投资组合的表达式。接下来考虑马尔可夫函数模型。最后,介绍了不确定波动率模型及其应用。摘要总结了要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信