Semiconducting Single Wall Carbon Nanotubes as Artificial Pili for Enhanced CO 2 Clostridium ljungdahlii Biofilms

Zhaodong Li, Wei Xiong, Bertrand J. Tremolet de Villers, Chao Wu, Bennett Addison, D. Svedružić, J. Blackburn
{"title":"Semiconducting Single Wall Carbon Nanotubes as Artificial Pili for Enhanced CO 2 Clostridium ljungdahlii Biofilms","authors":"Zhaodong Li, Wei Xiong, Bertrand J. Tremolet de Villers, Chao Wu, Bennett Addison, D. Svedružić, J. Blackburn","doi":"10.2139/ssrn.3575133","DOIUrl":null,"url":null,"abstract":"Bio-electrochemical systems have been applied successfully for electroreduction of waste carbon dioxide to chemicals. Despite the recent advances in biocathode design and performance, a fundamental understanding of how support electrode materials affect growth, organization and electroactivity of biofilms, and electron transfer across the electrode/bacterium interface is still lacking. Our study demonstrates that surface nanostructuring with semiconducting single-walled carbon nanotubes (SWCNTs) is beneficial for interfacial charge transfer and CO2 reducing activities of Clostridium ljungdahlii biofilms by mimicking the biological functions of conductive bio-wires, not by the commonly suggested mechanism of simply increasing biofilm coverage. We also show that applying a negative potential during biofilm growth is essential for production of electroactive biofilms. 13C isotope labeling experiments conclusively demonstrate that biocathodes can simultaneously utilize ethanol while reducing CO2. Deuterium isotope labeling experiments confirmed that the availability of electrochemically produced H2 as a redox mediator does not limit the efficiency of extracellular electron transfer (EET) and CO2 electro-reduction. These results provide important mechanistic information about EET across the bacterium/material interface in a model biohybrid system.","PeriodicalId":136014,"journal":{"name":"Sustainable Technology eJournal","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Technology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3575133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-electrochemical systems have been applied successfully for electroreduction of waste carbon dioxide to chemicals. Despite the recent advances in biocathode design and performance, a fundamental understanding of how support electrode materials affect growth, organization and electroactivity of biofilms, and electron transfer across the electrode/bacterium interface is still lacking. Our study demonstrates that surface nanostructuring with semiconducting single-walled carbon nanotubes (SWCNTs) is beneficial for interfacial charge transfer and CO2 reducing activities of Clostridium ljungdahlii biofilms by mimicking the biological functions of conductive bio-wires, not by the commonly suggested mechanism of simply increasing biofilm coverage. We also show that applying a negative potential during biofilm growth is essential for production of electroactive biofilms. 13C isotope labeling experiments conclusively demonstrate that biocathodes can simultaneously utilize ethanol while reducing CO2. Deuterium isotope labeling experiments confirmed that the availability of electrochemically produced H2 as a redox mediator does not limit the efficiency of extracellular electron transfer (EET) and CO2 electro-reduction. These results provide important mechanistic information about EET across the bacterium/material interface in a model biohybrid system.
半导体单壁碳纳米管作为增强型永格氏梭菌生物膜的人工菌毛
生物电化学系统已成功地应用于将废二氧化碳电还原为化学品。尽管最近在生物阴极的设计和性能方面取得了进展,但对于支持电极材料如何影响生物膜的生长、组织和电活性,以及电极/细菌界面上的电子转移,仍然缺乏基本的理解。我们的研究表明,半导体单壁碳纳米管(SWCNTs)的表面纳米结构通过模拟导电生物丝的生物学功能,而不是通过通常认为的简单增加生物膜覆盖率的机制,有利于龙氏梭菌生物膜的界面电荷转移和二氧化碳还原活性。我们还表明,在生物膜生长过程中施加负电位对于产生电活性生物膜是必不可少的。13C同位素标记实验最终证明了生物阴极可以在利用乙醇的同时减少CO2。氘同位素标记实验证实,电化学生成的H2作为氧化还原介质的有效性并不限制细胞外电子转移(EET)和CO2电还原的效率。这些结果提供了模型生物杂交系统中细菌/材料界面上EET的重要机制信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信