A Hierarchical Geometric Framework to Design Locomotive Gaits for Highly Articulated Robots

Baxi Chong, Yasemin Ozkan-Aydin, Guillaume Sartoretti, Jennifer M. Rieser, Chaohui Gong, Haosen Xing, H. Choset, D. Goldman
{"title":"A Hierarchical Geometric Framework to Design Locomotive Gaits for Highly Articulated Robots","authors":"Baxi Chong, Yasemin Ozkan-Aydin, Guillaume Sartoretti, Jennifer M. Rieser, Chaohui Gong, Haosen Xing, H. Choset, D. Goldman","doi":"10.15607/RSS.2019.XV.067","DOIUrl":null,"url":null,"abstract":"—Motion planning for mobile robots with many degrees-of-freedom (DoF) is challenging due to their high-dimensional configuration spaces. To manage this curse of di- mensionality, this paper proposes a new hierarchical framework that decomposes the system into sub-systems (based on shared capabilities of DoFs), for which we can design and coordinate motions. Instead of constructing a high-dimensional configuration space, we establish a hierarchy of two-dimensional spaces on which we can visually design gaits using geometric mechanics tools. We then coordinate motions among the two-dimensional spaces in a pairwise fashion to obtain desired robot locomotion. Further geometric analysis of the two-dimensional spaces allows us to visualize the contribution of each sub-system to the locomotion, as well as the contribution of the coordination among the sub-systems. We demonstrate our approach by designing gaits for quadrupedal robots with different morphologies, and experimentally validate our findings on a robot with a long actuated back and intermediate-sized legs.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

—Motion planning for mobile robots with many degrees-of-freedom (DoF) is challenging due to their high-dimensional configuration spaces. To manage this curse of di- mensionality, this paper proposes a new hierarchical framework that decomposes the system into sub-systems (based on shared capabilities of DoFs), for which we can design and coordinate motions. Instead of constructing a high-dimensional configuration space, we establish a hierarchy of two-dimensional spaces on which we can visually design gaits using geometric mechanics tools. We then coordinate motions among the two-dimensional spaces in a pairwise fashion to obtain desired robot locomotion. Further geometric analysis of the two-dimensional spaces allows us to visualize the contribution of each sub-system to the locomotion, as well as the contribution of the coordination among the sub-systems. We demonstrate our approach by designing gaits for quadrupedal robots with different morphologies, and experimentally validate our findings on a robot with a long actuated back and intermediate-sized legs.
基于层次几何框架的高关节机器人机车步态设计
多自由度移动机器人的高维构型空间对其运动规划提出了挑战。为了解决这一问题,本文提出了一种新的分层框架,该框架将系统分解为子系统(基于自由度的共享能力),我们可以为子系统设计和协调运动。我们没有构建一个高维位形空间,而是建立了一个二维空间的层次结构,在这个层次结构上我们可以使用几何力学工具直观地设计步态。然后,我们以两两方式在二维空间中协调运动,以获得所需的机器人运动。对二维空间的进一步几何分析使我们能够可视化每个子系统对运动的贡献,以及子系统之间协调的贡献。我们通过设计具有不同形态的四足机器人步态来证明我们的方法,并在具有长驱动背部和中等大小腿的机器人上实验验证了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信