Baxi Chong, Yasemin Ozkan-Aydin, Guillaume Sartoretti, Jennifer M. Rieser, Chaohui Gong, Haosen Xing, H. Choset, D. Goldman
{"title":"A Hierarchical Geometric Framework to Design Locomotive Gaits for Highly Articulated Robots","authors":"Baxi Chong, Yasemin Ozkan-Aydin, Guillaume Sartoretti, Jennifer M. Rieser, Chaohui Gong, Haosen Xing, H. Choset, D. Goldman","doi":"10.15607/RSS.2019.XV.067","DOIUrl":null,"url":null,"abstract":"—Motion planning for mobile robots with many degrees-of-freedom (DoF) is challenging due to their high-dimensional configuration spaces. To manage this curse of di- mensionality, this paper proposes a new hierarchical framework that decomposes the system into sub-systems (based on shared capabilities of DoFs), for which we can design and coordinate motions. Instead of constructing a high-dimensional configuration space, we establish a hierarchy of two-dimensional spaces on which we can visually design gaits using geometric mechanics tools. We then coordinate motions among the two-dimensional spaces in a pairwise fashion to obtain desired robot locomotion. Further geometric analysis of the two-dimensional spaces allows us to visualize the contribution of each sub-system to the locomotion, as well as the contribution of the coordination among the sub-systems. We demonstrate our approach by designing gaits for quadrupedal robots with different morphologies, and experimentally validate our findings on a robot with a long actuated back and intermediate-sized legs.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
—Motion planning for mobile robots with many degrees-of-freedom (DoF) is challenging due to their high-dimensional configuration spaces. To manage this curse of di- mensionality, this paper proposes a new hierarchical framework that decomposes the system into sub-systems (based on shared capabilities of DoFs), for which we can design and coordinate motions. Instead of constructing a high-dimensional configuration space, we establish a hierarchy of two-dimensional spaces on which we can visually design gaits using geometric mechanics tools. We then coordinate motions among the two-dimensional spaces in a pairwise fashion to obtain desired robot locomotion. Further geometric analysis of the two-dimensional spaces allows us to visualize the contribution of each sub-system to the locomotion, as well as the contribution of the coordination among the sub-systems. We demonstrate our approach by designing gaits for quadrupedal robots with different morphologies, and experimentally validate our findings on a robot with a long actuated back and intermediate-sized legs.